

BATTERY STORAGE FACILITY, CULHAM

Flood Risk Assessment and Conceptual Drainage Strategy

HLEF85368 6 – Layout v6 December 2024 rpsgroup.com

REPORT

Document status							
Version	Purpose of document	Authored by	Reviewed by	Approved by	Review date		
1	Draft	L. Anscomb	J. Morley	J. Morley	20/02/2023		
2	Updates to Layout	L. Anscomb/ J. Grady	J. Morley	J. Morley	05/05/2023		
3	Updates to Layout	J. Grady	J. Morley	J. Morley	01/11/2023		
4	Updates to Layout	J. Grady	J. Morley	J. Morley	16/04/2024		
5	Updates to Scheme – Layout v6	J. Grady	J. Morley	J. Morley	07/11/2024		
6	Client Comments – Layout v6	J. Grady	J. Morley	J. Morley	11/12/2024		

Approval for issue	
J. Morley	11/12/2024

© Copyright R P S Group Limited. All rights reserved.

The report has been prepared for the exclusive use of our client and unless otherwise agreed in writing by R P S Group Limited , any of its subsidiaries, or a related entity (collectively 'RPS'), no other party may use, make use of, or rely on the contents of this report. The report has been compiled using the resources agreed with the client and in accordance with the scope of work agreed with the client. No liability is accepted by RPS for any use of this report, other than the purpose for which it was prepared. The report does not account for any changes relating to the subject matter of the report, or any legislative or regulatory changes that have occurred since the report was produced and that may affect the report. RPS does not accept any responsibility or liability for loss whatsoever to any third party caused by, related to or arising out of any use or reliance on the report.

RPS accepts no responsibility for any documents or information supplied to RPS by others and no legal liability arising from the use by others of opinions or data contained in this report. It is expressly stated that no independent verification of any documents or information supplied by others has been made. RPS has used reasonable skill, care and diligence in compiling this report and no warranty is provided as to the report's accuracy. No part of this report may be copied or reproduced, by any means, without the prior written consent of RPS.

Prepared by:

Prepared for:

RPS Consulting Services Ltd

Statera Energy

Contents

1	SCOPE OF WORK Background Project Scope	1
2	SOURCES OF INFORMAITON Introduction Legislation and Guidance National Planning Policy Framework Planning Practice Guidance Legislative background Climate Change Local Planning Policy	3 3 4 4 4
3	CONSULTATION Environment Agency Lead Local Flood Authority Local Planning Authority Internal Drainage Board	7 7 7 8
4	SITE SETTING Site Location Surrounding Land Uses Topography	9 9
5	PROPOSED DEVELOPMENT	.10
6	FLOOD RISK ASSESSMENT Hydrological Overview Fluvial and Tidal Flooding Soakaway Testing Sewer/Water Main Failure Assessment	.11 .11 .13
7	FLOOD RISK VULNERABILITY CLASSIFICATION	
8	DRAINAGE Surface Water and Drainage Strategy	.16 .16 .17 .17 .18 .19 .19 .19
9	SUMMARY AND CONCLUSIONS Summary Flood Risk Conclusion	.26 .26

Appendices

- Appendix A EA Consultation Response
- Appendix B LLFA Consultation
- Appendix C Topographic Survey
- Appendix D Development Plans
- $\label{eq:appendix} \mbox{ } E-\mbox{ } Ground\mbox{ } Investigation\mbox{ } Report$
- Appendix F Greenfield Runoff Rate
- Appendix G Conceptual Drainage Strategy
- Appendix H MicroDrainage Calculations

1 SCOPE OF WORK

Background

- 1.1 At the request of Statera Energy, RPS Consulting Services Limited (RPS) has prepared a sitespecific Flood Risk Assessment (FRA) to support the application for the development of a Battery storage facility and associated infrastructure. The site is located north of Thame Lane, Culham, OX14 3GY. The assessment has been undertaken in accordance with the National Planning Policy Framework (NPPF) and Planning Practice Guidance (PPG).
- 1.2 The key objectives of the FRA are to:
 - assess the flood risk to the proposed development and to demonstrate the feasibility of appropriately designing the development such that any residual flood risk to the development and users would be acceptable;
 - assess the potential impact of the proposed development on flood risk elsewhere and to demonstrate the feasibility of appropriately designing the development such that the development would not increase flood risk elsewhere; and
 - satisfy the requirements of the NPPF and Planning Practice Guidance which require FRAs to be submitted in support of planning applications for development over 1 ha in area.
- 1.3 Developments that are designed without regard to flood risk may endanger lives, damage property, cause disruption to the wider community, damage the environment, be difficult to insure and require additional expense on remedial works. Current guidance on development and flood risk identifies several key aims for a development to ensure that it is sustainable in flood risk terms. These aims are as follows:
 - the development should not be at a significant risk of flooding and should not be susceptible to damage due to flooding;
 - the development should not be exposed to flood risk such that the health, safety or welfare of the users of the development, or the population elsewhere, is threatened;
 - normal operation of the development should not be susceptible to disruption as a result of flooding;
 - safe access to and from the development should be possible during flood events;
 - the development should not increase flood risk elsewhere;
 - the development should not prevent safe maintenance of watercourses or maintenance and operation of flood defences;
 - the development should not be associated with an onerous or difficult operation and maintenance regime to manage flood risk. The responsibility for any operation and maintenance required should be clearly defined;
 - future users of the development should be made aware of any flood risk issues relating to the development;
 - the development design should be such that future users will not have difficulty obtaining insurance or mortgage finance, or in selling all or part of the development, as a result of flood risk issues;
 - the development should not lead to degradation of the environment; and
 - the development should meet all of the above criteria for its entire lifetime, including consideration of the potential effects of climate change.
- 1.4 The FRA is undertaken with due consideration of these sustainability aims.

Project Scope

- 1.5 This FRA has the following structure:
 - Sections 2 and 3 identify the sources of information that have been consulted in preparation of the report;
 - Sections 4 and 5 describe the site location and the existing and proposed site development layout;
 - Section 6 provides a hydrological review of the site and undertakes an FRA of the proposed development scheme;
 - Section 7 describes the sites vulnerability status in line with the NPPF and PPG;
 - Section 8 describes the runoff characteristics and drainage of the site;
 - Section 9 provides a summary and conclusion to the report.

2 SOURCES OF INFORMAITON

Introduction

2.1 Table 1 below lists the information sources consulted during preparation of this report.

Table 1: Information sources consulted during preparation of the report.

Source	Data	Notes	
Ordnance Survey	OS Mapping 1: 50 000	Area information, rivers and other	
		watercourses, general site environs,	
		built environment, catchment	
		Information	
British Geological Survey	BGS (online) Geology of Britain	Site and area geology	
	Viewer		
Environment Agency (EA)	EA data holdings, customer	Current flood risk, local flood	
	service and engagement team	defences, flood levels, supplementary	
		geology and groundwater information	
Local Planning Authority (LPA)) South Oxfordshire Local Plan Flood Zoning		
South Oxfordshire District Council		Local Development Framework	
UK Government: Department for	NPPF	Flood zoning for the site as used by	
Communities and Local	Planning Practice Guidance	the EA in England	
Government			

2.2

The Reports consulted during the preparation of the document are listed below:

Table 2: Reports consulted during preparation of the document

Source	Data			Information	n consulted/	provided
Oxfordshire County Council	Oxfordshire County Council		Current Flood Zone / risk to the site		< to the site	
	Local Flood	d Risk	Management	including	historical	flooding
	Strategy			locations		
				Any relev	ant flood	modelling
				complete fo	r the site	
EA	Thames:	Catchm	ient Flood	Flood risk m	nanagement	policies
	Managemen	t Plan De	ecember 2009			

Legislation and Guidance

National Planning Policy Framework

- 2.3 The National Planning Policy Framework (NPPF) was released in March 2012 and was last updated in December 2023. The document sets out Government planning policies for England and how these are expected to be applied. The framework acts as guidance for local planning authorities and decision-takers, both in drawing up plans and making decisions about planning applications.
- 2.4 Section 14 sets out the need for an appropriate assessment of flood risk. Guidance on the minimum requirements for such an assessment is contained in PPG ID7.
- 2.5 The NPPF requires the application of a sequential risk-based approach to determining the suitability of land for development in flood risk areas, and that flood risk assessment should be carried out to the appropriate degree, at all levels of the planning process.

2.6 Footnote 55 identifies that 'A site-specific flood risk assessment should be provided for all development in Flood Zones 2 and 3. In Flood Zone 1, an assessment should accompany all proposals involving: sites of 1 hectare or more; land which has been identified by the Environment Agency as having critical drainage problems; land identified in a strategic flood risk assessment as being at increased flood risk in future; or land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use'.

Planning Practice Guidance

2.7 PPG ID7 Flood Risk and Coastal Change provides guidance to ensure the effective implementation of the NPPF planning policy for development in areas at risk of flooding.

Legislative background

- 2.8 Following the implementation of the Flood and Water Management Act 2010 local flood risk has become the responsibility of the Local Planning Authority. The Act places new duties on upper tier Councils, by designating them as Lead Local Flood Authorities (LLFAs) for the coordination of local flood risk management in their respective administrative areas.
- 2.9 From April 6, 2015, the responsibility for drainage and surface water management design approval resides with the local planning authority and should be submitted as part of the planning process.
- 2.10 The local planning authority has responsibility for the approval of proposed drainage systems in new developments and redevelopments. Approval must be given before any developer can commence construction. In order to be approved, the proposed drainage system would have to meet national standards for sustainable drainage.
- 2.11 The local planning authority is also responsible for adopting and maintaining SuDS which serve more than one property, which they have approved. The Highways Authorities will be responsible for maintaining SuDS in public roads to National Standards.
- 2.12 The SuDS Manual C753 sets out the criteria by which the form of drainage appropriate to any particular site or development can be determined, as well as requirements for the design, construction, operation and maintenance of SuDS.
- 2.13 Additional guidance for the use of SuDS is provided via CIRIA and BRE in the following:
 - C609 Sustainable drainage systems. Hydraulic, structural and water quality advice (Superseded by C697 but remains current)
 - C156 Infiltration Drainage Manual of Good practice
 - BRE Digest 365 Soakaway design

Climate Change

2.14 The NPPF and supporting planning practice guidance on Flood Risk and Coastal Change explain when and how flood risk assessments should be used. This includes demonstrating how flood risk will be managed now and over the development's lifetime, taking climate change into account.

Peak River Flow Allowances

- 2.15 In May 2022, the EA last updated advice on climate change allowances to support the NPPF. Peak river flow allowances show the anticipated changes to peak flow by management catchment. Management catchments are sub-catchments of river basin districts. Peak River Flow Allowances should be considered for locations that are currently in Flood Zone 1 but might be in Flood Zone 2 or 3 in the future.
- 2.16 EA guidance on the application of climate changes allowance is dependent on the proposed developments vulnerability. As the development is a Battery Storage facility this application is deemed as Essential Infrastructure. The EA require that for Essential Infrastructure developments located in Flood Zones 2, 3a or 3b, the higher central allowance should be used to assess climate

change. Battery Storage developments have a lifetime of 40 years therefore will fall into the 2060s epoch.

2.17 The proposed Culham site is located within the Gloucestershire and the Vale Management Catchment for which the following peak river flow allowances are applicable.

Table 3: Gloucestershire and the Vale Management Catchment Peak River Flow Allowances

Epoch	Central	Higher Central	Upper End
2020s	11%	17%	33%
2050s	11%	19%	43%
2080s	26%	41%	84%

2.18 Based on the lifetime of the development and the vulnerability classification, an allowance of 19 – 41% is appropriate. As the Peak River Flow Allowances are considered to ensure the safety of people using the development when planning safe access, escape routes and places of refuge, it is unlikely that this will be a pertinent focus for this development. However, for completeness, comment will be made on this in Section 6.

Peak Rainfall Allowances

- 2.19 Peak Rainfall Allowances are used to consider how increased rainfall affects surface water flood risk and the design of drainage systems to manage the increased rainfall.
- 2.20 New guidance requires that for developments with a lifetime of between 2061 and 2100, Flood Risk Assessments and Strategic Flood Risk Assessments should assess the central allowances for the 2070s epoch for both the 1% and 3.3% annual exceedance probability events. The proposed Culham site is located within the Gloucestershire and the Vale Management Catchment for which the following Peak Rainfall Allowances are applicable.

Table 4: Gloucestershire and the Vale Management Catchment Peak Rainfall Allowances

5.5% Annual Exceedance Rannan Event						
Epoch	Central	Upper				
2050s	20%	35%				
2070s	25%	35%				
1% Annual Exceedance Rainfall E	vent					
Epoch	Central	Upper				
2050s	20%	40%				
2070s	25%	40%				

3.3% Annual Exceedance Rainfall Event

2.21 Based on the above information, an allowance of 20 - 25% is appropriate. RPS have taken a conservative approach to the design of the conceptual drainage system and added 40% to all attenuation / runoff calculations for the development to account for climate change.

Local Planning Policy

2.22 The South Oxfordshire District Council Local Plan 2035 was adopted on 10th December 2020. The Local Plan contains the following policy relating to flood risk and drainage:

Policy EP4: Flood Risk

- 1. The Risk and impact of flooding will be minimised through:
 - *i.)* Directing new development areas with the lowest possibility of flooding;

- *ii.)* Ensuring that all new development addresses the effective management of all sources of flood risk;
- iii.) Ensuring that development does not increase the risk of flooding elsewhere; and
- iv.) Ensuring wider environmental benefits of development in relation to flood risk.
- 2. The suitability of development proposed in Flood Zones will be strictly assessed using the 'Sequential Test' and where necessary the 'Exceptions Test'. A sequential approach should be used at site level.
- 3. A site-specific Flood Risk Assessment (FRA) should be provided for all developments in Flood Zones 2 and 3. In Flood Zone 1 an FRA should accompany all proposals involving:
 - sites of 1 hectare or more;
 - land which has been identified by the Environment Agency as having critical drainage problems;
 - land identified in the Strategic Flood Risk Assessment as being at increased flood risk in future; or
 - land that may be subject to other sources of flooding, where development would introduce a more vulnerable use.
- 4. All development proposals must be assessed against the current South Oxfordshire Strategic Flood Risk Assessment or any updates and the Oxfordshire Local Flood Risk Management Strategy to address locally significant flooding. Appropriate mitigation and management measures must be implemented and maintained.
- 5. All development will be required to provide a Drainage Strategy. Development will be expected to incorporate Sustainable Drainage Systems and ensure that run-off rates are attenuated to greenfield run-off rates. Higher rates would need to be justified and the risks quantified. Development should strive to reduce run-off rates for existing developed sites.
- 6. Sustainable Drainage Systems should seek to enhance water quality and biodiversity in line with the Water Framework Directive.
- 2.23 The South Oxfordshire District Council SFRA identifies and maps flood risk from all sources at a borough-wide scale as well as providing guidance on producing site specific FRAs. Relevant information from the SFRA has been referenced throughout this FRA report.

3 CONSULTATION

Environment Agency

3.1 The FRA has been prepared in consultation with the Partnership and Strategic Overview Team at the EA. The EA has been contacted with request for information for the flood history in the area and any other flood related issues at the site. A response was received on 10th January 2023. The EA confirmed that they do not have any detailed flood risk modelling for the site. The full response is provided in Appendix A for reference.

Lead Local Flood Authority

- 3.2 The site is within the administrative boundary of Oxfordshire County Council, who act as the LLFA for the site. Consultation has been undertaken with the Flood Team regarding any information relating to flood risk and drainage.
- 3.3 The LLFA confirmed that they do not hold data for any historical flood events that have occurred in the vicinity of the site. The full response is provided in Appendix B for reference.

Local Planning Authority

3.4 Comments were received on the development from the South Oxfordshire District Council (SODC) Planning Officer in August 2024. The reason for refusal related to drainage, and where/how this has been addressed is detailed below:

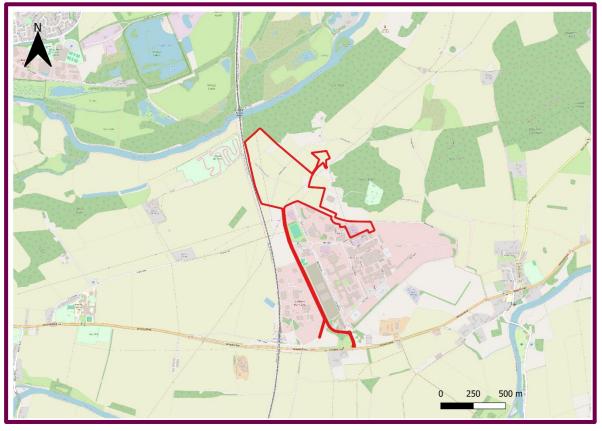
Table 5. SODC Refusal Reason - Drainage and Addressed Comment

Reason	Reason Details	How/where this has been addressed
Number		
6	Insufficient information has been	The drainage strategy had previously been designed
	submitted to demonstrate that the	utilising a surface water outfall to an ordinary
	proposed development would be	watercourse, which was deemed unfeasible.
	served by an appropriate drainage	The Drainage Strategy for the site has now been
	strategy. As such, the proposal is	designed utilising infiltration methods of surface water
	contrary to Policies INF4, EP4 and	disposal as per the preference of the Drainage
	STRAT4 of the South Oxfordshire	Hierarchy. Concerns have previously been raised over
	Local Plan 2035.	the use of infiltration at battery storage sites, due to fire
		risk and the associated contamination of waterbodies
		during firefighting activities. It is proposed that the
		battery compound gravel bases are lined to prevent
		uncontrolled infiltration. The bases will form an
		attenuation blanket, which during normal operating
		conditions will form part of the wider drainage strategy.
		The penstocks will be present at the outlet of the
		attenuation blanket.
		The penstocks at site, as default, will be open. This will
		allow surface water from these areas to be collected and
		conveyed into the wider surface water management
		strategy at the site. The installation of an automated
		penstock system will allow the remote closure of

penstocks, at the outset of a fire event, without the need for personnel on-site.

The attenuation blanket will provide storage for water released onto the site during a fire event, and will hold the water until testing is undertaken, and deemed if the water should be tanked off-site for specialised treatment or can be released into the wider drainage system.

Details on the proposed surface water drainage system are provided within Section 8, and Appendices G and H.


Internal Drainage Board

3.5 The site is not located within an IDB District

4 SITE SETTING

Site Location

4.1 The site is located at National Grid Reference SU 52952 96447, is irregular in shape and occupies an area of approximately 25.13 hectares (ha). The site location is presented in Figure 1.

Figure 1: Site Location

4.2 The site is currently occupied by greenfield, which is used for agricultural purposes. Vehicular and pedestrian access to site is via Thame Lane which currently passes through the site. The site comprises approximately 95% soft landscaping cover and 5% hardstanding.

Surrounding Land Uses

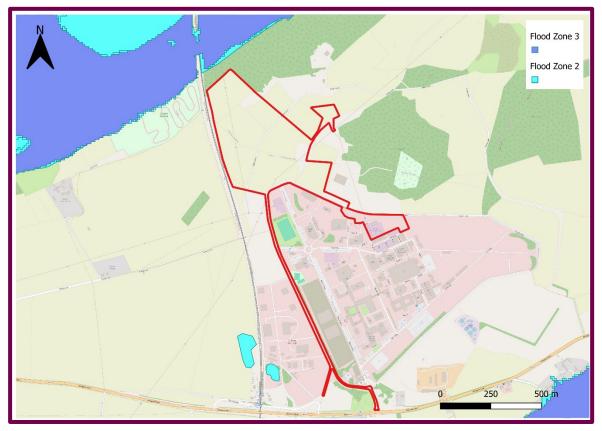
- 4.3 The site is bounded to the north and east by undeveloped greenfield land. Wooded areas lie beyond the greenfield land which are named as Lock Wood and Furze Brake to the north and east respectively.
- 4.4 The Didcot and Chester Railway Line runs along the western edge of the site.
- 4.5 Culham Science Centre to located to the south of the site.
- 4.6 There are no designated sensitive areas, e.g. Special Area of Conservation (SAC), Special Protection Area (SPA) or Site of Special Scientific Interest (SSSI)) within close proximity to the site. The Culham Brake SSSI is located approximately 1.8km west of the site.

Topography

4.7 A topographic survey was completed by Beacon Land Surveys in August 2022, reference 22-059-01. The survey indicates that the site generally falls in a south easterly direction with levels of approximately 74.69m AOD along the north-eastern boundary of the site, falling to approximately 63.77m AOD along the south-western boundary. The topographic survey is located in Appendix C.

5 PROPOSED DEVELOPMENT

- 5.1 It is understood that a planning application is sought for the construction of a Battery Storage Facility with associated infrastructure consisting of;
 - Substations;
 - Inverters and transformers;
 - Battery Containers with a loose gravel surface;
 - Access roads and hardstanding for parking;
 - Associated car parking and control kiosk;
 - 1.5 m high Fencing; and
 - Landscaping including hedgerows and woodland planting.
- 5.2 Development plans are shown in Appendix D.
- 5.3 Site access will be via a track leading to the south of the site, onto Thame Lane.
- 5.4 The proposed use of the site is classified as 'Essential Infrastructure' within the PPG.
- 5.5 The potential to provide surface water attenuation, including the use of Sustainable Drainage Systems (SuDS), has been considered as part of the preliminary design process (see Section 10 Surface Water Management).


6 FLOOD RISK ASSESSMENT

Hydrological Overview

- 6.1 OS Mapping indicates that the nearest main watercourse feature is located approximately 500m north of the site and is considered to be stretch of the River Thames, which is alternatively known as the River Isis within the region, from its source in the Cotswolds until the confluence with the Thame in Oxfordshire. A further branch of the River Thames is also located approximately 2 km south of the site.
- 6.2 Located approximately 1.3km to the west of the site is Swift Ditch which is an artificial channel which is linked/feeds into the River Thames.
- 6.3 The site is not tidally influenced and there appears to be no culverted watercourses within the vicinity of the site.
- 6.4 No other significant artificial features such as canals and reservoirs have been identified within 1km of the site.

Fluvial and Tidal Flooding

6.5 The EA Flood Map for Planning, which is available online, indicates that the site is located within Flood Zone 1, which is land assessed as having a less than 1 in 1,000 annual probability of river or sea flooding. The EA Flood Map for Planning is provided in Figure 2.

Figure 2: EA Flood Map for Planning (River and Sea)

6.6 As the site is located a significant distance in land, the site is not considered to be at risk from tidal sources.

EA Flood Warning Area

6.7 The EA defines a Flood Warning Area as "geographical areas where we expect flooding to occur and where we provide a Flood Warning Service. They generally contain properties that are expected to flood from rivers or the sea and in some areas, from groundwater." The site is not located in a Flood Warning Area.

Surface Water Flood Risk Classification

- 6.8 The EA's updated Flood Map for Surface Water, which is available online, identifies areas at risk of surface water flooding. The classification of the risk is based on the following annual probability of flooding:
 - High risk; area has a chance of flooding greater than 1 in 30.
 - Medium risk; area has a chance of flooding between 1 in 30 and 1 in 100.
 - Low risk; area has a chance of flooding between 1 in 100 and 1 in 1000.
 - Very low risk; has a chance of flooding less than 1 in 1000.
- 6.9 The EA surface water map indicates that the vast majority of the site is at a 'Very Low' risk of surface water flooding.
- 6.10 Small discrete areas of 'Low' risk are identified within the eastern portion of the site and along Thame Lane adjacent to the southern boundary. During a low-risk scenario, depths within these areas do not exceed 0.3m, with velocities between 0.25 1.00 m/s.
- 6.11 The updated Flood Map for Surface Water is presented in Figure 3.

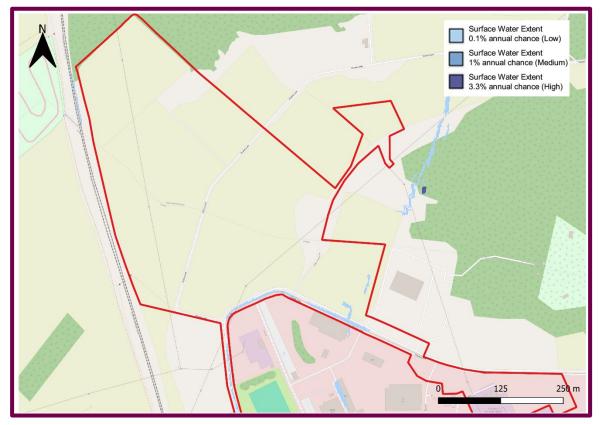


Figure 3: Flood Map for Surface Water

Reservoir Flooding Flood Risk Classification

6.12 The Flood Risk from Reservoirs Map indicates that the site is not at risk of reservoir flooding. Reservoir regulation ensures that reservoirs are stringently inspected and supervised by qualified civil engineers and that any required maintenance or upgrade works are carried out quickly. This helps ensure that the likelihood of one of them failing remains extremely low.

Groundwater Flooding

- 6.13 British Geological Survey (BGS) online mapping (1:50,000 scale) indicates that the site is situated on Lower Greensand Group, comprising sandstone. There are no records of superficial deposits at the site.
- 6.14 No available BGS borehole logs are located within the surrounding area.
- 6.15 The soils are described as 'freely draining slightly acid sandy soils' by the National Soils Research Institute.
- 6.16 According to the MAGIC's Aquifer Designation Mapping, the Lower Greensand Group is classified as a Secondary A aquifer. These formations are formed of permeable layers capable of supporting water supplies at a local scale, in some cases forming an important source of base flow to rivers.
- 6.17 MAGIC's online groundwater Source Protection Zone (SPZ) mapping indicates that the site is not located within a groundwater SPZ.
- 6.18 An intrusive ground investigation was carried out by Geo-Environmental Services Ltd (ref: GE21162/SA01/221006) to inform the emerging drainage strategy for the proposed development. The ground investigation consisted of three dynamic windowless boreholes to the depths of up to 5.0m below ground level (bgl).
- 6.19 The data collected from the ground investigation at the site is summarised in Table 5 below. For the full results of the intrusive ground investigation please see Appendix E.

Borehole Name	Borehole Location	Borehole depth (m)	Deposits	Groundwater Strikes
WS1	North-east of the site	3.70 m	Summertown Radley sand and Gravel Member Superficial deposits of light brown silty gravelly fine, medium sand and some rootlets.	No groundwater strikes were recorded at this borehole
WS2	South of the site	4.70m	Summertown Radley sand and Gravel Member Stratum was described as brown silty medium with some rootlet topsoil.	Groundwater strikes were recorded at 3.18 bgl.
WS3	North of the site	5.0 m	Summertown-Radley Sand and Gravel Member The stratum was described as brown slightly silty gravelly medium Sand with some rootlets and topsoil.	Groundwater strikes were recorded at 4.95m bgl

Table 6: Borehole Ground Investigation Results

6.20 Overall, Borehole WS2 and Borehole WS3 both recorded ground water strikes. WS2 had groundwater from depths of 2.6m below ground level (bgl). In WS3, groundwater strikes were recorded at 4.95m bgl immediately after drilling but had dropped to a depth below 5.00m bgl in the monitoring standpipe after 2.5 hours.

Soakaway Testing

- 6.21 Percolation Tests help to determine whether the ground conditions are suitable for soakaway installation, by analysing the water absorption rate of the soil, which indicates how quickly the soil seeps down.
- 6.22 BRE365 testing provides the information on carrying information for calculating soil infiltration (percolation) rates as well. Soakaways should discharge from full to half-volume within 24 hours.
- 6.23 Soakaway testing was carried out in accordance with BRE365 and was undertaken in trial pits TP1 to TP4. In trial pits TP1 and TP3, Test 1 was abandoned, and Test 2 commenced at the end of the first day of testing when it became apparent that Test 1 would conclude during the night and accurate measurements would not be possible.

6.24 The test results have been summarised in Table 6 below. For the full results of the investigation please see Appendix E.

Location	Pit Depth (m bgl)		Permeability (m/s)		
		Test 1	Test 2	Test 3	
TP1	1.70	2.6 x 10 ^{-6*}	2.6 x 10 ⁻⁶	1.9 x 10 ^{-6*}	
TP2	1.90	1.4 x 10 ⁻⁵	1.1 x 10 ⁻⁵	8.7 x 10 ⁻⁶	
TP3	1.60	3.3 x 10 ^{-6*}	2.9 x 10 ⁻⁶	2.8 x 10 ^{-6*}	
TP4	2.00	2.7 x 10 ⁻⁶	Insufficient time to complete further tests		

Table 7. Soakage Test Results

Note: * based on data extrapolation

Sewer/Water Main Failure Assessment

- 6.25 No drainage records have been provided for the site. The land is currently agricultural land and therefore it is assumed that no artificial drainage systems will be present within the site area.
- 6.26 It is assumed that sewer and surface water drainage will have been designed to industry standards (e.g. Sewers for Adoption). However, the most common causes of flooding from sewers are; inadequate flow capacity, blockages, pumping station failures, burst water mains, water inflow from rivers or the sea, tide locking, siltation, fats/greases, and sewer collapse. Should any of these events occur there is a risk of flooding by surcharge where the flows are in excess of the sewer capacity (usually 1 in 30 year events or greater).
- 6.27 Taking into account the above and absence of any historical sewer flooding the overall risk of flooding via artificial drainage system to the site has been assessed as low.

7 FLOOD RISK VULNERABILITY CLASSIFICATION

Vulnerability Classification

- 7.1 In accordance with the Flood Risk Vulnerability Classification in Table 2 of the Planning and Practice Guidance Flood Risk and Coastal Change, the Battery storage facility is classified as an 'Essential Infrastructure' development in flood risk terms.
- 7.2 The built development associated with the application site is located within an area identified as Flood Zone 1. Table 3 of Planning Practice Guidance (Table 4 of this report) indicates that all uses are acceptable for locations in Flood Zone 1.

Table 8: Flood Risk Vulnerability	y and Flood Zone 'Compatibility'

Flood Risk Vulnerability classification (see Table 3 of Planning Practice Guidance)	Essential Infrastructure	Water Compatible	Highly Vulnerable	More Vulnerable	Less Vulnerable
Zone 1	Yes	Yes	Yes	Yes	Yes
Zone 2	Yes	Yes	Exception test required	Yes	Yes
Zone 3a	Exception test required	Yes	No	Exception test required	Yes
Zone 3b Functional Floodplain	Exception test required	Yes	No	No	No

Key: Yes: Development is appropriate, No: Development should not be permitted.

8 DRAINAGE

Surface Water and Drainage Strategy

- 8.1 The sustainable management of surface water is an essential element of reducing future flood risk to the site and its surroundings.
- 8.2 Undeveloped sites generally rely on natural drainage to convey or absorb rainfall, the water soaking into the ground or flowing across the surface into watercourses.
- 8.3 The effect of development is generally to reduce the permeability of at least part of the site, which markedly changes the site's response to rainfall. Without specific measures to manage surface water the volume of water and peak flow rate are likely to increase. Inadequate surface water drainage arrangements can threaten the development itself and increase the risk of flooding to others.
- 8.4 Surface water arising from a developed site should as far as is practicable be managed in a sustainable manner to mimic the surface water flows arising from the site prior to the proposed development while reducing the risk of flooding at the site and elsewhere, taking climate change into account.

Sustainable Drainage Options

- 8.5 The NPPF and associated Planning Practice Guidance ID7 and CIRIA C753 SUDS Manual (2015) promotes sustainable water management through the use of SuDS. A hierarchy of techniques is identified:
 - 1. Prevention the use of good site design and housekeeping measures on individual sites to prevent runoff and pollution (e.g. minimise areas of hard standing).
 - 2. Source Control control of runoff at or very near its source (such as the use of rainwater harvesting).
 - 3. Site Control management of water from several sub-catchments (including routing water from roofs and car parks to one/several large soakaways for the whole site).
 - 4. Regional Control management of runoff from several sites, typically in a detention pond or wetland.
- 8.6 The implementation of SuDS as opposed to conventional drainage systems, provides several benefits by:
 - Reducing peak flows to watercourses or sewers and potentially reducing the risk of flooding downstream;
 - Reducing the volumes and frequency of water flowing directly to watercourses or sewers from developed sites;
 - Improving water quality over conventional surface water sewers by removing pollutants from diffuse pollutant sources;
 - Reducing potable water demand through rainwater harvesting;
 - Improving amenity through the provision of public open spaces and wildlife habitat; and
 - Replicating natural drainage patterns, including the recharge of groundwater so that base flows are maintained.

Runoff Calculations

- 8.7 The greenfield nature of the site means that surface water will slowly soak into the ground (infiltrate), be intercepted by vegetation or run off by way of overland flow, according to the soil characteristics and following the topography of the site.
- 8.8 Impermeable areas for the site have been calculated allowing for the following:

- Crushed Stone Tracks
- Batteries
- Inverter Houses
- Transformers
- Control Rooms
- Spare Parts Containers
- Water Tanks
- 8.9 To ensure that the development manages surface water sustainably, an allowance has also been provided for the additional substation compounds associated with the development. As these areas will contain very limited hardstanding, the following impermeable allowances have been given for each substation area:
 - Statera owned Compound located to the east of the site comprises transformers located within a bunded area on gravel base – 30% impermeable area
 - Extension to existing NGET substation located to the south east of the site comprises circuit breakers sat on permeable gravel surface – 20% impermeable area
- 8.10 Details of the substation areas and cross sections are provided with Appendix D.
- 8.11 Due to the nature of these areas, it is determined that there is no contamination potential, and additional lining of these areas does not need to be considered.
- 8.12 Greenfield runoff rates for the site have been calculated by way of Interim Code of Practice for Sustainable Drainage Systems (ICP SUDS). This implements a pro rata IOH124 methodology, for sites below 50ha in size. The runoff rates were calculated using the MicroDrainage software.
- 8.13 The following parameters were incorporated into the greenfield runoff calculations:
 - Impermeable Area: 4.61ha
 - Average Annual Rainfall (SAAR): 600 mm/year
 - Soil: 0.300
 - Region No: 6
- 8.14 The calculation has been included for reference within Appendix F and outputs are summarised within Table 8.

Table 9: Greenfield Runoff (Based on a 1 ha area)

Return Period	Greenfield Runoff Rate (I/s)
Q1	1.3
QBar	1.5
Q30	3.4
Q100	4.9

Infiltration Rates

8.15 Infiltration rates help to determine, the rates at which ground conditions are suitable for soakaway/infiltration installation. The best case and worst-case scenarios are calculated, and the worst-case scenario value helps to inform the actual drainage concept.

8.16 The infiltration rates have been calculated from the soakaway testing results. The following is a summary of results for the 100-year +40% climate change for worst and best case infiltration scenarios.

Table 10. Storage Calculations for the Worst-Case Infiltration

Storm Event	720 min Winter
Max Level (m)	63.970
Max Depth (m)	1.210
Max Infiltration (I/s)	17.9
Max Volume (m ³)	3645.0

Table 11. Storage Calculations for the Best-Case Infiltration

Storm Event	480 min Winter
Max Level (m)	63.972
Max Depth (m)	1.212
Max Infiltration (I/s)	27.1
Max Volume (m ³)	3395.5

8.17 As the worst-case scenario is used to inform the drainage strategy, the maximum storage volume required for a 1 in 100 year + 40% climate change event is approximately 3,645m³.

Proposed Surface Water Drainage

- 8.18 The proposed surface water drainage system was designed using current MicroDrainage analysis software, taking into account planning, LLFA and EA guidance to prevent uncontrolled flooding of the site and surrounding area.
- 8.19 The Indicative Drainage Layout is provided in Appendix G. Surface water runoff will be captured by a series of on-site filter drains, designed in accordance with the CIRIA C753 SuDS Manual. Each filter drain will contain a perforated pipe. Prior to surface water entering the infiltration basin it will pass through a proprietary Vortex Grit Separator, to provide additional treatment of the surface water flows. The infiltration basin will provide adequate storage for all storm events up to and including the 1 in 100-year return period with an additional 40% for future climate change, based on the MicroDrainage calculations provided in Appendix H.
- 8.20 Infiltration methods are deemed to be appropriate given the underlying geology and the soakaway testing results. This will ensure that runoff is managed as close to the source as possible.
- 8.21 Gravel compound bases will be lined to prevent uncontrolled infiltration. This will form an attenuation blanket and will provide additional attenuation, to be utilised in the unlikely event of a battery fire.
- 8.22 The Infiltration Basin will provide adequate storage for all storm events up to and including the 1 in 100-year return period with an additional 40% for future climate change, based on the MicroDrainage calculations provided in Appendix H.

8.23

8.24 The development site will be operated remotely, and so will not generate any foul drainage water. There is no requirement for any foul drainage provision on this site.

Management of Fire Water

- 8.25 In order to manage the risk associated with a highly unlikely fire event, the development will include both a provision for the supply of fire water via water tanks and/or hydrants, in addition containment of fire water used to supress any fire.
- 8.26 As set out by the National Fire Chiefs Council (NFCC), a water supply able to provide 1,900 litres per minute for at least two hours (228,000 litres/ 228 m³) is required at BESS sites.
- 8.27 Fire water will be stored on site within the main compound in either sectional steel panel tanks or cylindrical steel panel tanks. The total fire water provision will meet the requirements of the NFCC.
- 8.28 An onsite fire containment strategy will be incorporated into the overall site drainage design. In the unlikely event of a fire the unit on fire will be left to burn out, in accordance with general guidance for Battery units, whilst water will be focussed on the adjacent battery units to ensure the fire is contained. As a consequence, the runoff generated is less likely to pose a contamination risk. Runoff used to cool the units will be initially intercepted and contained within the lined gravel bases. This will allow a compartmentalised approach to the containment of water in the event of a fire. Automatically controlled penstocks will be installed at the outlet of the lined gravel bases allow containment of potentially contaminated water for testing prior to either tanking offsite if contaminated, or alternatively discharged in accordance with the approved drainage strategy. The drainage strategy provides sufficient storage for the additional firewater which may be released onto the site. Details on the attenuation blanket storage are provided in Appendix H.

Construction Stage Drainage

- 8.29 During construction of the development, the building contractor will be responsible for management and disposal of rainwater runoff generated from the site in its temporary condition.
- 8.30 The contractor shall develop a formal site management plan, which will address pollution management and control in relation to site plant and vehicles, raw materials storage and waste generation, to ensure that all surface water runoff generated in the temporary condition will be free of contamination.
- 8.31 The site will be subject to topsoil strip and bulk earthworks to prepare the site to the correct level for development. The contractor shall provide temporary drainage measures to contain runoff within the development site boundary ensuring that this is sized appropriately, and that means to remove excess surface water are available for use at all times.

Water Quality / Pollution Control

- 8.32 Surface water run-off should be managed by SuDS that are designed to attenuate flows and to avoid water quality impacts downstream. To demonstrate that surface water arising from the development will be appropriately treated prior to discharge, the Simple Index Approach, as outlined within the SuDS Manual (CIRIA C753) has been followed.
- 8.33 As stated in the SuDS Manual 2015 (C753), the risk posed by surface water runoff to the receiving environment is a function of:
 - the pollution hazard at a particular site (i.e. the pollutant source)
 - the effectiveness of SuDS treatment components in reducing levels of pollutants to environmentally acceptable levels, groundwater (i.e. the pollutant pathway)
 - the sensitivity of the receiving environment (i.e. the environmental receptor).
- 8.34 Table 26.2 of C753 (Table 11 of this report) provides details of various land uses and the associated pollution hazard levels. While there is no one category which exactly suits this development, the proposals are industrial in nature, so it is considered that applying a High Hazard Level would be the most appropriate, if not conservative. An extract of Table 26.2 is provided below.

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cui de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) le < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways1	Medium	0.7	0.5	0.7
Sites with heavy pollution (eg haulage vards, lorry parks, highly frequented orry approaches to industrial estates, vaste sites), sites where chemicals and uels (other than domestic fuel oil) are o be delivered, handled, stored, used or manufactured, industrial sites; trunk oads and motorways ¹	High	0.6°	0.8°	0.9°

Table 12: Pollution hazard indices for different land use classifications

TA 20

Motorways and trunk roads should follow the guidance and risk assessment process set out in Highways Agency (2009).

2

These should only be used if considered appropriate as part of a detailed risk assessment – required for all these land use types (Table 4.3). When dealing with high hazard sites, the environmental regulator should first be consulted for pre-permitting advice. This will help determine the most appropriate approach to the development of a design solution.

8.35 Table 26.3 of C753 (Table 12 of this report) indicates indicative pollution hazard level mitigation indices for different SuDS measures.

Table 13: Indicative SuDS mitigation indices for discharges to surface waters

	Mitigation indices ¹						
Type of SuDS component	TSS	Metals	Hydrocarbons				
Filter strip	0.4	0.4	0.5				
Filter drain	0.4 ²	0.4	0.4				
Swale	0.5	0.6	0.6				
Bioretention system	0.8	0.8	0.8				
Permeable pavement	0.7	0.6	0.7				
Detention basin	0.5	0.5	0.6				
Pond*	0.7°	0.7	0.5				
Wetland	0.83	0.8	0.8				
Proprietary treatment systems ^{e,e}	These must demonstrate that they can address each of the contaminant types to acceptable levels for frequent events up to approximately the 1 in 1 year return period event. for inflow concentrations relevant to the contributing drainage area.						

Notes

1 SuDS components only deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters.

2 Filter drains can remove coarse sediments, but their use for this purpose will have significant implications with respect to maintenance requirements, and this should be taken into account in the design and Maintenance Plan.

3 Ponds and wetlands can remove coarse sediments, but their use for this purpose will have significant implications with respect to the maintenance requirements and amenity value of the system. Sediment should normally be removed upstream, unless they are specifically designed to retain sediment in a separate part of the component, where it cannot easily migrate to the main body of water.

4 Where a wetland is not specifically designed to provide significantly enhanced treatment, it should be considered as having the same mitigation indices as a pond.

See Chapter 14 for approaches to demonstrate product performance. A British Water/Environment Agency assessment code of practice is currently under development that will allow manufacturers to complete an agreed test protocol for systems intended to treat contaminated surface water runoff. Full details can be found at: http://tinyurl.com/qf7yuj7 5

SEPA only considers proprietary treatment systems as appropriate in exceptional circumstances where other types of SuDS component are not practicable. Proprietary treatment eveteme may also be considered appropriate for existing sites that are causing pollution where there is a requirement to retrofit treatment. SEPA (2014) also provides a flowchart with a summary of checks on suitability of a proprietary system. 6

8.36 The information summarised in Table 13 below indicates that suitable pollution mitigation provision would be afforded through the use of filter drains, a grit separator and the attenuation blanket.

Table 14: Summary of Pollution Hazard and Mitigation Indices for Site and Proposed SuDS components

Pollution	Pollution Hazard	SuDS Component	TSS	Metal	Hydro-carbons
Hazard Indices	High	-	0.8	0.8	0.9
SuDS Mitigation	-	Filter Drain	0.4	0.4	0.4
	-	Attenuation Blanket	0.7 ^T	0.6 ^T	0.7 ^T
	-	Grit Separator*	0.5 ^T	0.4 ^T	0.8 ^T
Total SuDS Mitigation	-	-	1	0.9	1.15

* Mitigation indices have been calculated using the Advanced Hydrodynamic Vortex Separator manufactured by Hydro International.

^T When designing in accordance with the SuDS Manual (Ciria C753), when two or more methods are used in sequence to target the same pollutant, only half of the mitigation index of the subsequent components should be allowed in the calculation.

Maintenance

8.37 The following information indicates the typical maintenance regimes, and not exhaustive, that will be considered within the detailed drainage design to ensure continued satisfactory operation of the site drainage systems. The maintenance activities would be split into three categories, namely Regular, Occasional & Remedial, as detailed in Table 32.1 of C753 (Table 14 of this report).

TAB 32.

Operation and maintenance activity		SuDS component											
	Pond	Wetland	Detention basin	Infiltration basin	Soakaway	Infiltration trench	Filter drain	Modular storage	Pervious pavement	Swale/bioretention/ trees	Filter strip	Green roofs	Proprietary
Regular maintenance										ı			
Inspection													
Litter and debris removal													
Grass cutting													
Weed and invasive plant control													
Shrub management (including pruning)													
Shoreline vegetation management													
Aquatic vegetation management													
Occasional maintenance													
Sediment management ¹													
Vegetation replacement													
Vacuum sweeping and brushing													
Remedial maintenance													
Structure rehabilitation /repair													
Infiltration surface reconditioning													

Table 15: SuDS components operation and maintenance activities

will be required

may be required

Notes 1 Sediment should be collected and managed in pre-treatment systems, upstream of the main device.

- 8.38 There may also be one-off requirements sometimes referred to as "establishment maintenance", particularly for planting (e.g. weeding and watering). Regular maintenance consists of basic tasks carried out on a frequent and predictable schedule, including inspections/monitoring, silt or oil removal (if required more frequently than once per year), vegetation management, sweeping of surfaces and litter/debris removal.
- 8.39 Occasional maintenance comprises tasks that are likely to be required periodically, but on a much less frequent and predictable basis that the regular tasks. Guidance on the components pertinent to this drainage proposal are detailed below.
- 8.40 Remedial maintenance comprises the intermittent tasks that may be required to rectify faults associated with system, although the likelihood of faults can be minimised by good design, construction and regular maintenance activities. Where remedial work is found to be necessary, it is likely to be due to site-specific characteristics or unforeseen events, so timings are difficult to predict.
- 8.41 In addition to general cleaning of roof gutters and downstream sediment traps, Tables 15 to 18 indicate the minimum required maintenance regime that needs to be implemented post construction for the SuDS elements that will comprise the bulk of the proposed drainage system, including filter drains, grit separator, attenuation blanket and associated infrastructure.

Maintenance schedule	Require Action	Typical Frequency
Routine Maintenance	Remove litter and debris and inspect for sediment, oil and grease accumulation	Six monthly
	Change the filter media	As recommended by manufacturer
	Remove sediment, oil, grease and floatables	As necessary – indicated by system inspections or immediately following significant spill
Remedial Actions	s Replace malfunctioning parts or structures	As required
Monitoring	Inspect for evidence of poor operation	Six monthly
	Inspect filter media and establish appropriate replacement frequencies	Six monthly
	Inspect sediment accumulation rates and establish appropriate removal frequencies	Monthly during first half year of operation, then every six months

Table 16: Proprietary Treatment Systems (Grit Separator) Maintenance Requirements

Maintenance schedule	Require Action	Typical Frequency	
Regular Maintenance	Remove litter (including leaf litter) and debris from filter drain surface, access chambers and pre-treatment devices	Monthly (or as required)	
	Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage	Monthly	
	Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation, and establish appropriate silt removal frequencies	Six monthly	
	Remove sediment from pre-treatment devices	Six monthly, or as required	
Occasional Maintenance	Remove or control tree roots where they are encroaching the sides of the filter drain, using recommended methods (eg NJUG, 2007 or BS 3998:2010)	As required	
	At locations with high pollution loads, remove surface geotextile and replace, and wash or replace overlying filter medium	Five yearly, or as required	
	Clear perforated pipework of blockages	As required	

Table 17: Filter Drains Maintenance Requirements

Table 18: Attenuation Blanket Maintenance Requirements

Maintenance schedule	Require Action	Typical Frequency
Regular Maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site specific observations of clogging or manufacturer's recommendations – pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment
Occasional	Stabilise and mow contributing and adjacent areas	As required
Maintenance	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required – once per year on less frequently used pavements
Remedial Actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm o the level of the paving	As required f
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural	As required

	performance or a hazard to users, and replace lost jointing material	
	Rehabilitation of surface and upper substructure by remedia sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)
Monitoring	Initial inspection	Monthly for three months after installation
	Inspect for evidence of poor operation and/or weed growth · if required, take remedial action	-Quarterly, 48 hr after large storms in first six months
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

Table 19: Inlet and Outlet Headwalls Maintenance Requirements

Maintenance schedule	Require Action	Typical Frequency		
Regular Maintenance	Litter removal	As required		
	Inspect vegetation above and around headwall and remove nuisance plants (for first 3 years)	Monthly (at start, then as required)		
	Tidy all dead growth before start of growing season	Annually		
	Remove sediment from aprons	Annually		
	Flap valves and grilles: Check for and clear obstructions	Quarterly		
Remedial Actions	Repair of erosion or other damage around headwalls	As required		
Monitoring	Inspect structures for evidence of poor operation	Monthly/after large storms		
	Inspect structures, pipework etc. for evidence of physical damage	Monthly/after large storms		
	Inspect silt accumulation rates and establish appropriate removal frequencies	Half yearly		
	Check flap valves	Half yearly		

9 SUMMARY AND CONCLUSIONS

Summary

9.1 A site-specific Flood Risk Assessment (FRA) in accordance with the NPPF and PPG ID7 has been prepared to support the application for the development of a Battery facility and associated infrastructure.

Flood Risk

- 9.2 EA mapping shows that the site is located within Flood Zone 1, which is land assessed as having a less than 1 in 1,000 annual probability of river or sea flooding.
- 9.3 The majority of the site is at a 'Very Low' risk of surface water flooding. Small discreet areas of 'Low' risk are identified within the eastern portion of the site and along Thames Lane adjacent to the southern boundary. During a low-risk scenario, depths within these areas do not exceed 0.3m, with velocities between 0.25 1.00 m/s.
- 9.4 The site susceptibility to groundwater flooding has been assessed as low.
- 9.5 The site is not at risk of flooding from reservoir infrastructure failure.
- 9.6 The proposed development type is defined as 'Essential Infrastructure' in the NPPF and PPG.
- 9.7 There will be an increase in impermeable area at site, therefore surface water will be attenuated and discharged from the site via an attenuation blanket. MicroDrainage calculations indicate that the overall attenuation requirement for the development is approximately 3645m³ for the 1 in 100 year storm event plus a 40% allowance for climate change.
- 9.8 The drainage strategy incorporates a number of surface water cleaning techniques in order that any discharges are as 'clean' as reasonably practicable.
- 9.9 The impacts of the increase in surface water runoff will be reduced by the incorporation of appropriate and practicable SuDS mitigations measures in the built design.

Conclusion

9.10 This FRA and supporting documentation illustrate that the development area is at low risk of flooding from all sources and meets the requirements of the NPPF and Planning Practice Guidance.

Appendix A – EA Consultation Response

Jessica Grady

From:	Enquiries_THM <enquiries_thm@environment-agency.gov.uk></enquiries_thm@environment-agency.gov.uk>
Sent:	10 January 2023 10:46
То:	RPS Hydrology Services
Subject:	THM293876 Flooding Information Request (Product 4): Land North of Thame Lane, OX14 3GY

CAUTION: This email originated from outside of RPS.

Dear Jessica,

THM293876

Location of site: Land North of Thame Lane, OX14 3GY

Thank you for your email requesting Product 4 data.

We unfortunately do not have any detailed flood risk modelling in this location. We are sorry that we are therefore unable to provide modelled flood levels and extents for your site.

The Flood Map for Planning in this location is likely to be based on JFLOW data which is not suitable for use in site specific Flood Risk Assessments. Please advise if you would like to request JFLOW data for this location.

You can access our flood map for planning on our website:

https://flood-map-for-planning.service.gov.uk/

You can find more information on the long term risk of flooding for this location on our website:

https://flood-warning-information.service.gov.uk/long-term-flood-risk

You can find recorded flood outlines for this location via the link below:

https://data.gov.uk/dataset/recorded-flood-outlines1

You can find out the risk of flooding from surface water for this location via the link below:

https://data.gov.uk/dataset/d5ca01ec-e535-4d3f-adc0-089b4f03687d/risk-of-flooding-from-surface-watersuitability

You may be interested in the following guidance / information publically available:

- 'Planning Practice Guidance' provides information about planning considerations in areas at risk of flooding. <u>https://www.gov.uk/government/collections/planning-practice-guidance</u>
- 'Planning applications: assessing flood risk' information about completing Flood Risk Assessments. <u>https://www.gov.uk/guidance/flood-risk-assessment-for-planning-applications</u>
- 'Site specific flood risk assessment: Checklist' a checklist to help ensure you have considered all the relevant factors in your flood risk assessment. <u>https://www.gov.uk/guidance/flood-risk-andcoastal-change#Site-Specific-Flood-Risk-Assessment-checklist-section</u>

Please be aware that from 20th July 2021 the climate change allowances required in flood risk assessments have been updated. Please see <u>https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances#contents</u> for more information.

I hope that we have correctly interpreted your request. Please refer to our Open Government Licence for the permitted use of the supplied data: <u>http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/</u>

Please be aware that many of our datasets are now available online. Simply visit <u>environment.data.gov.uk</u>

We respond to requests for recorded information that we hold under the Freedom of Information Act 2000 (FOIA) and the associated Environmental Information Regulations 2004 (EIR).

Please get in touch if you have any further queries or contact us within two months if you'd like us to review the information we have sent.

Kind regards,

Customers & Engagement Team - Thames

- 8 <u>enquiries_THM@environment-agency.gov.uk</u>
- + Environment Agency | Red Kite House, Howbery Park, Wallingford, OX10 8BD

ARE YOU AT RISK FROM FLOODING? FLOODS Check your flood risk today

From: RPS Hydrology Services <RPSHydrologyServices@rpsgroup.com>
Sent: 23 December 2022 11:47
To: Enquiries_THM <enquiries_THM@environment-agency.gov.uk>
Subject: Flooding Information Request (Product 4): Land North of Thame Lane, OX14 3GY

Dear Sir / Madam,

We would like to request flood risk assessment data (also known as a Product 4) for the Land North of Thame Lane, OX14 3GY (GRID REF: SU 52950 96434). We also would like to have any history of flooding at the site and any other flood related information. A map with the site boundary is attached below:

Kind regards, Jessica

RPS Hydrology Services (They/Them)

RPS | Consulting UK & Ireland 4th Floor 1 Newhall St Birmingham B3 3NH, United Kingdom **T** +44 121 622 8520 **E** RPSHydrologyServices@rpsgroup.com

Follow us on: rpsgroup.com | LinkedIn | Facebook | Instagram | YouTube

This e-mail message and any attached file is the property of the sender and is sent in confidence to the addressee only.

Internet communications are not secure and RPS is not responsible for their abuse by third parties, any alteration or corruption in transmission or for any loss or damage caused by a virus or by any other means.

RPS Group Plc, company number: 208 7786 (England). Registered office: 20 Western Avenue Milton Park Abingdon Oxfordshire OX14 4SH.

RPS Group Plc web link: http://www.rpsgroup.com

Information in this message may be confidential and may be legally privileged. If you have received this message by mistake, please notify the sender immediately, delete it and do not copy it to anyone else. We have checked this

email and its attachments for viruses. But you should still check any attachment before opening it. We may have to make this message and any reply to it public if asked to under the Freedom of Information Act, Data Protection Act or for litigation. Email messages and attachments sent to or from any Environment Agency address may also be accessed by someone other than the sender or recipient, for business purposes.

Appendix B – LLFA Consultation

Jessica Grady

From:	Littler, Adam - Oxfordshire County Council <adam.littler@oxfordshire.gov.uk></adam.littler@oxfordshire.gov.uk>
Sent:	09 December 2022 15:33
To:	Louisa Anscomb
Subject:	Flood Risk Query: OX14 3GY

CAUTION: This email originated from outside of RPS.

Dear Louisa,

I note your following request for information.

RPS have been commissioned to prepare a Flood Risk Assessment for a development, for Land north of Culham Science Park with the nearest post code being OX14 3GY.

As part of our enquiries, could we please request the following:

- Details of any historic flooding from any source in the vicinity of the site
- Details of any culverted watercourses in the vicinity of the site
- Any flood modelling or mapping that the council has regarding the vicinity of the site
- Details of any known surface water drainage issues in the vicinity of the site

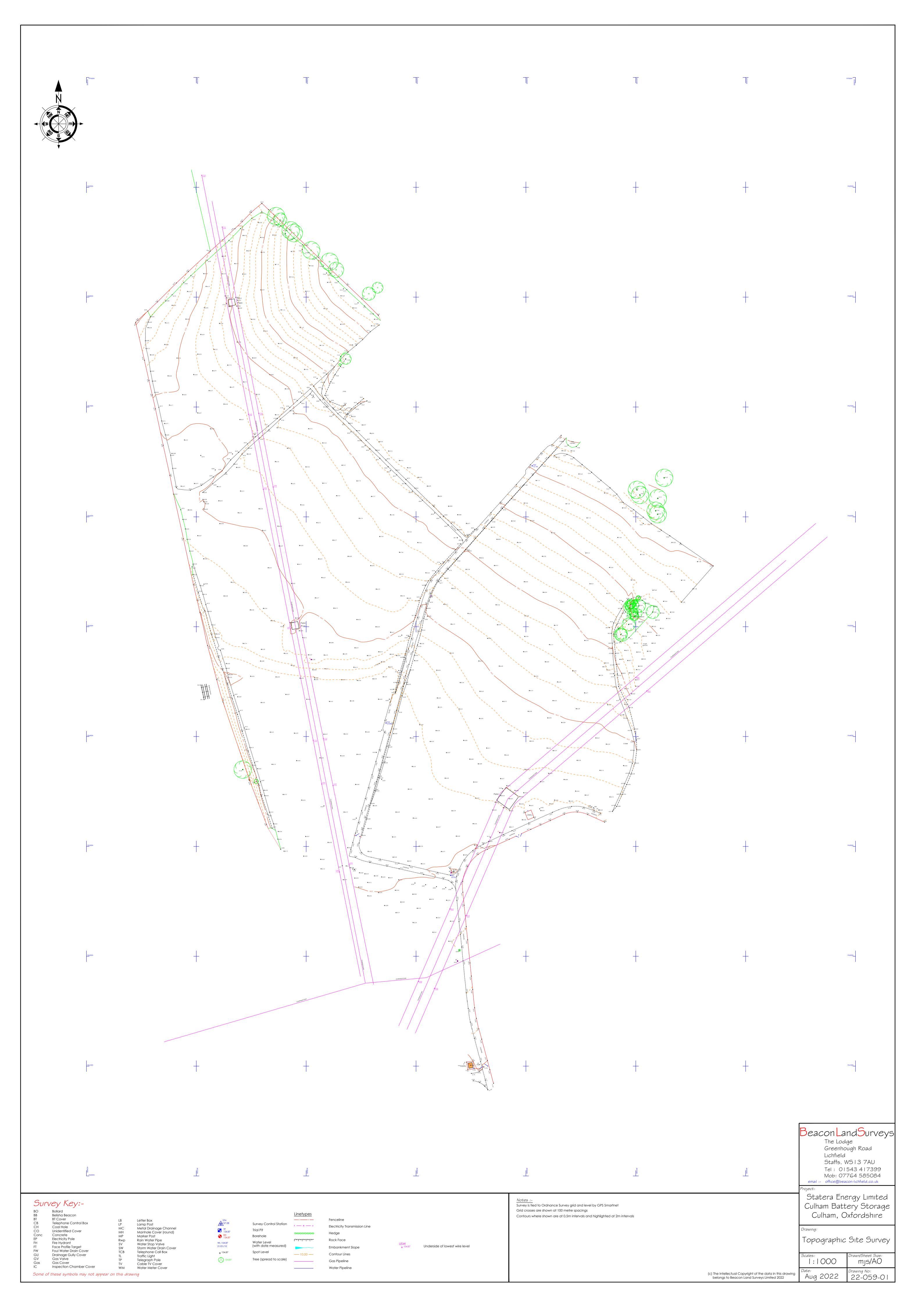
Do you have any site-specific comments and drainage constraints or requirements for this site?

The LLFA have checked our historic flood data base and we do not have any recorded flood events in the area provided below. It should be stressed that this is not to say it has not flooded but it means we do not have a record of it.

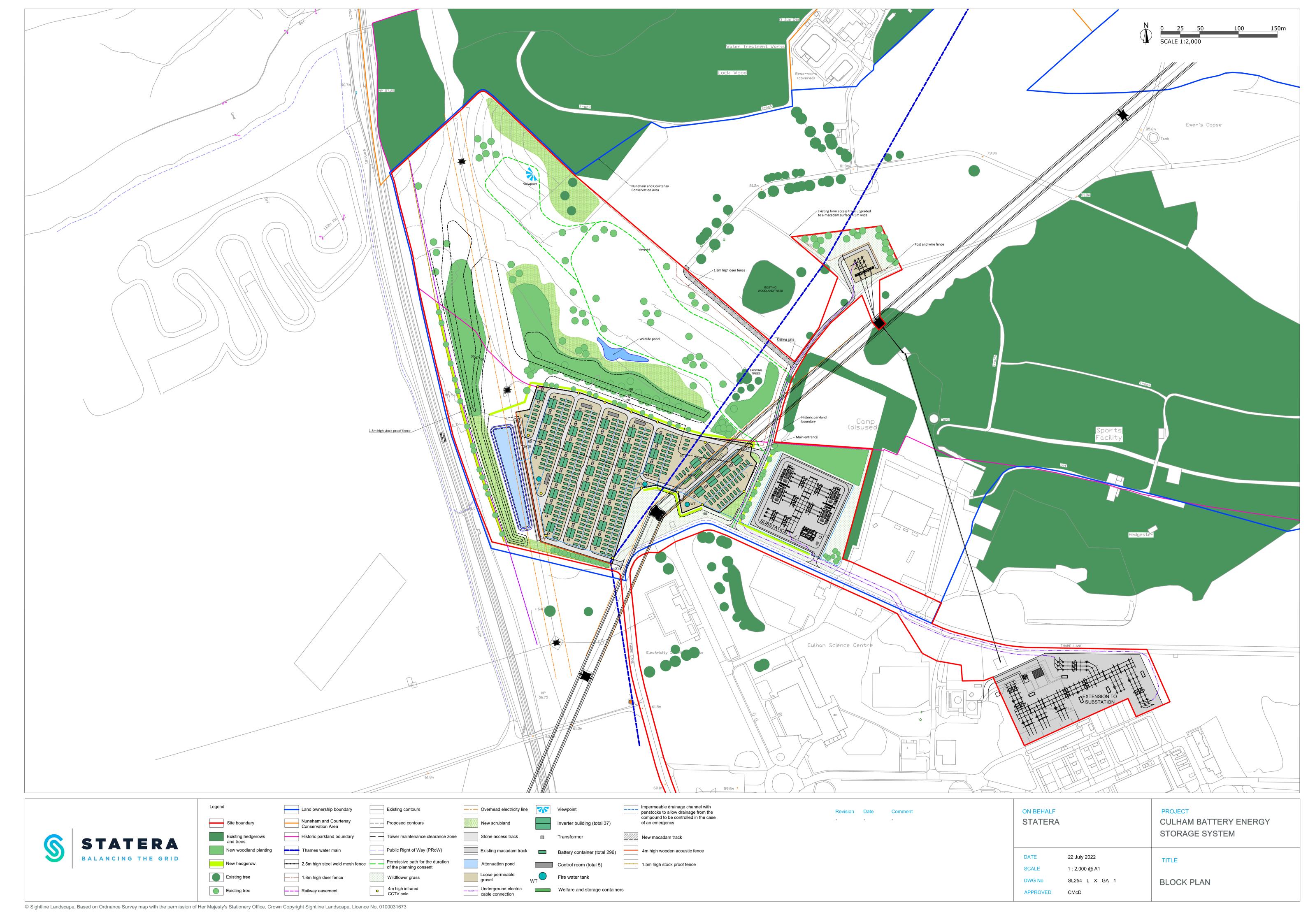
Please could I direct you to the link in the below signature for OCC LLFA Pre-Application service, should you choose this option the LLFA will be able to provide site specific steer to your proposals.

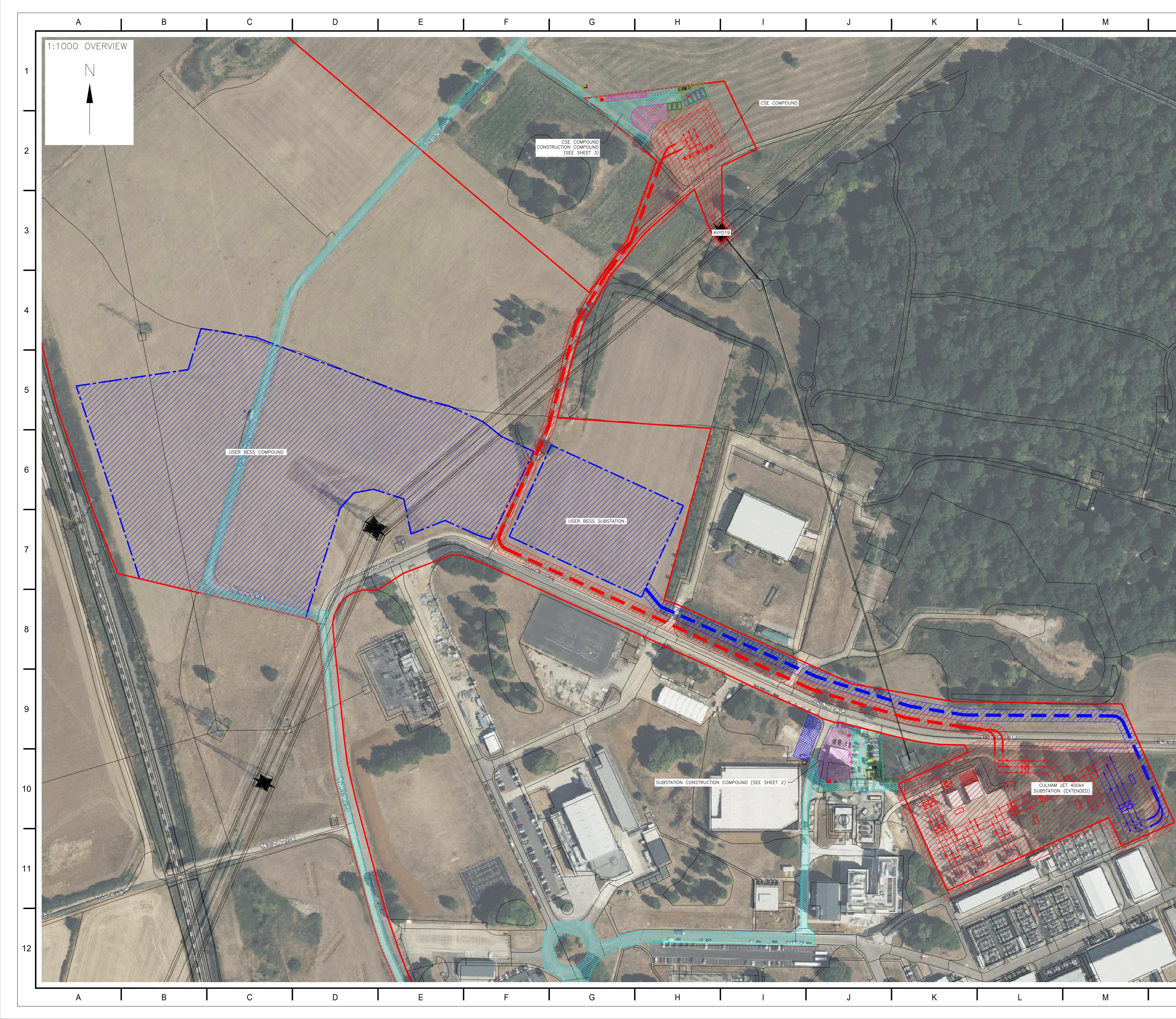
Kind regards,

Adam.

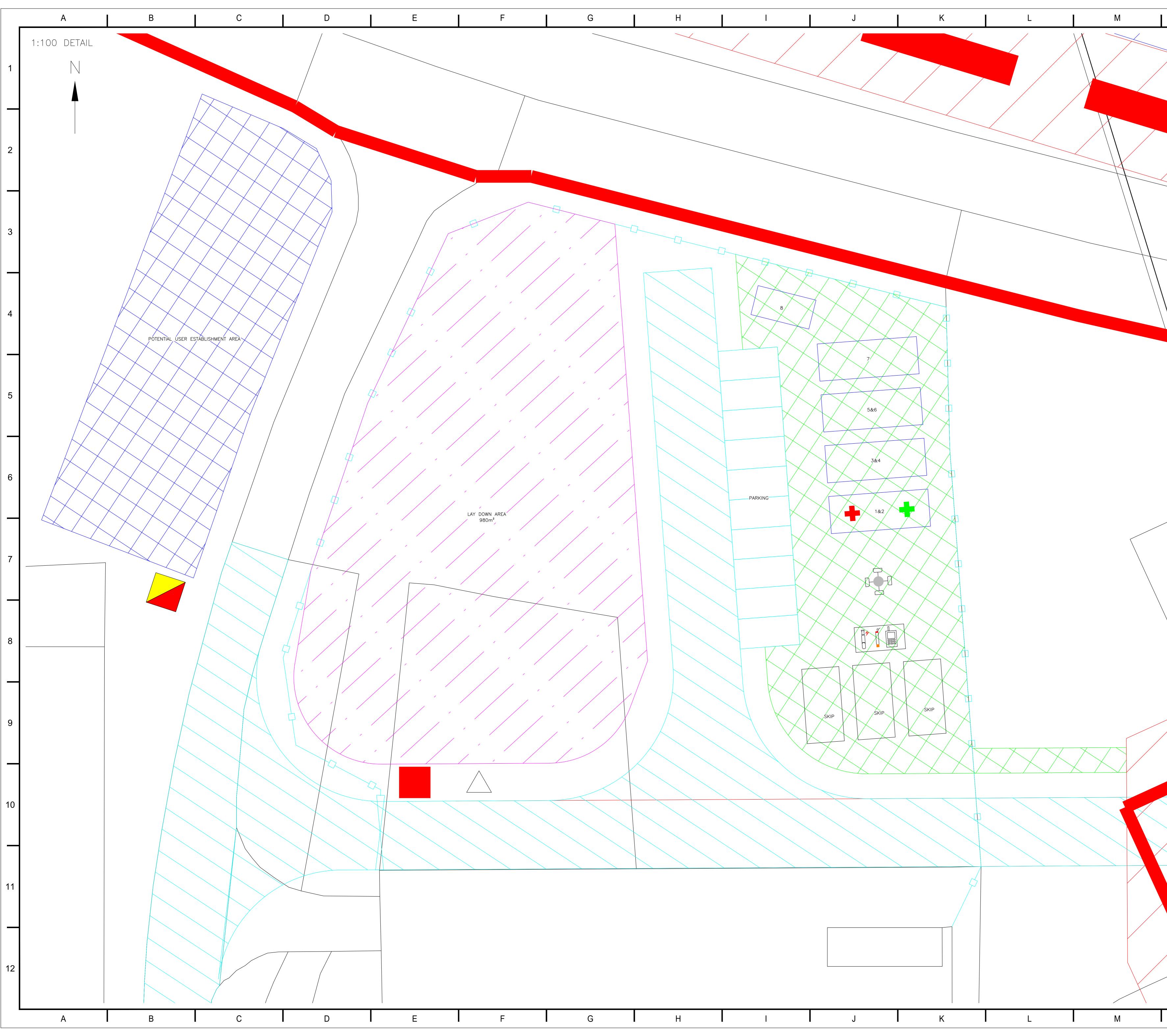

Flood Risk Engineer (South and Vale) Environment and Place | Growth and Place Oxfordshire County Council County Hall New Road Oxford OX1 1ND

Did you know that we have a new pre-application service available for Lead Local Flood Authority advice? Find out more <u>here</u>.

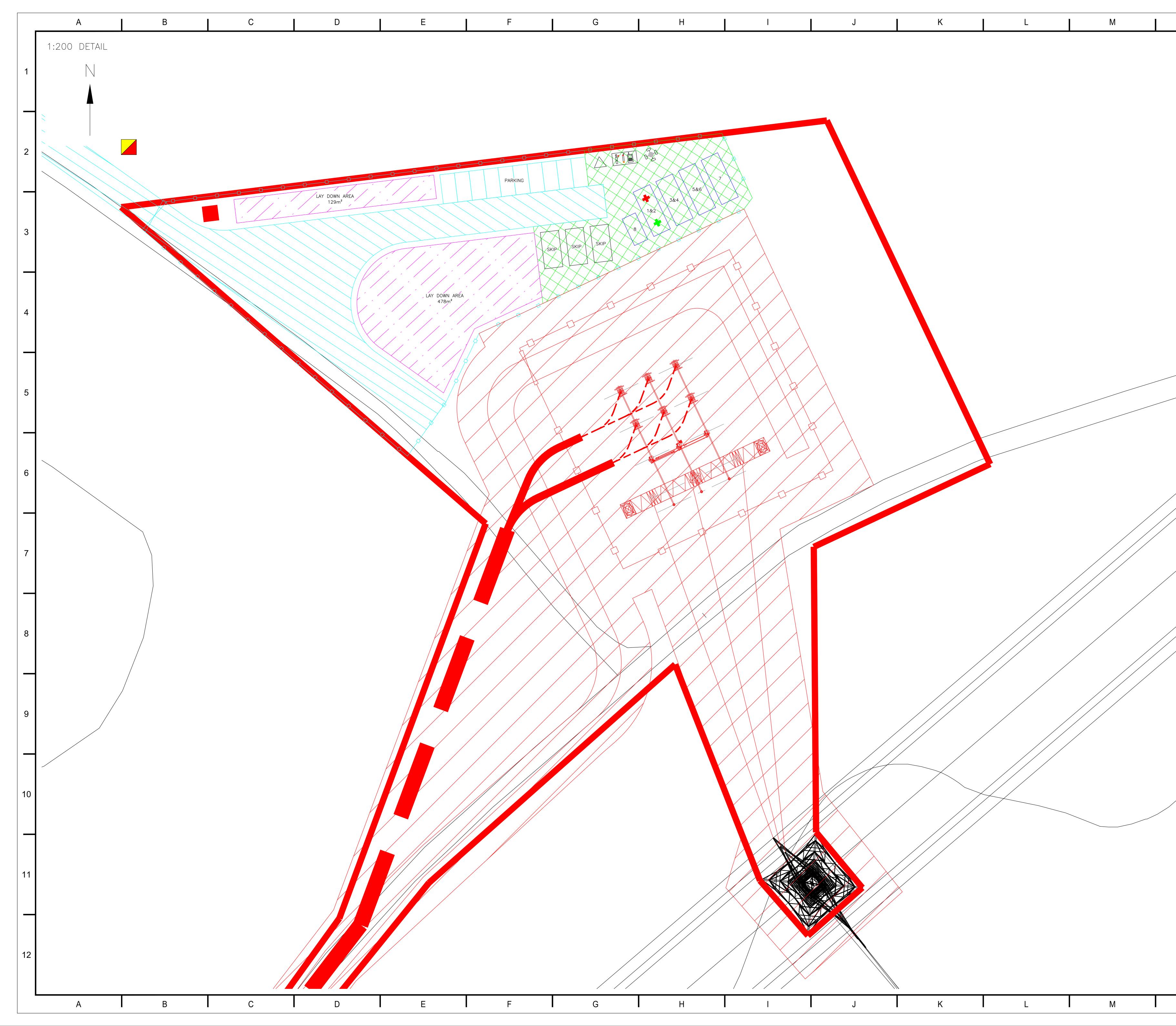

www.oxfordshire.gov.uk

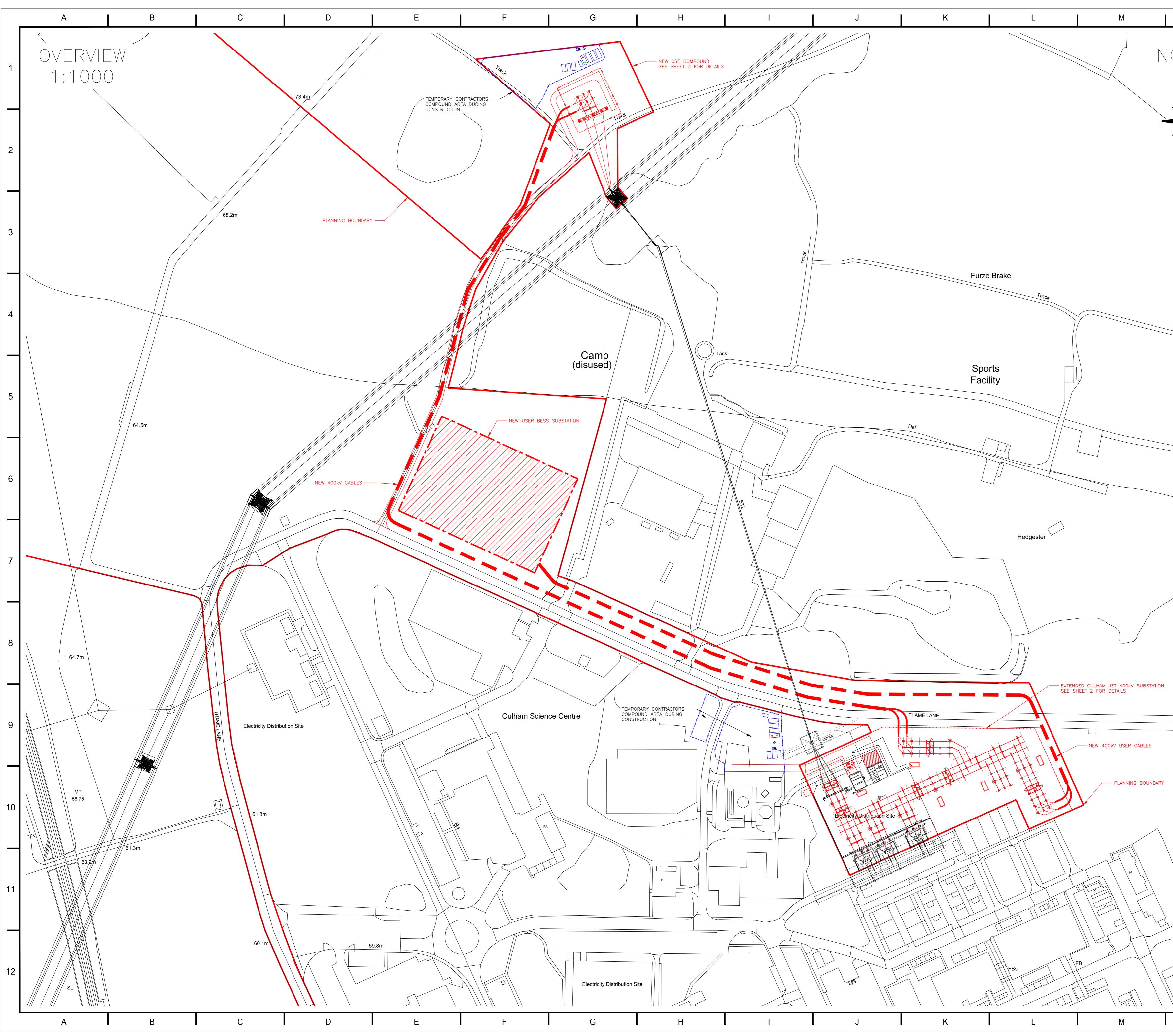

This email, including attachments, may contain confidential information. If you have received it in error, please notify the sender by reply and delete it immediately. Views expressed by the sender may not be those of Oxfordshire County Council. Council emails are subject to the Freedom of Information Act 2000. <u>email disclaimer</u>.

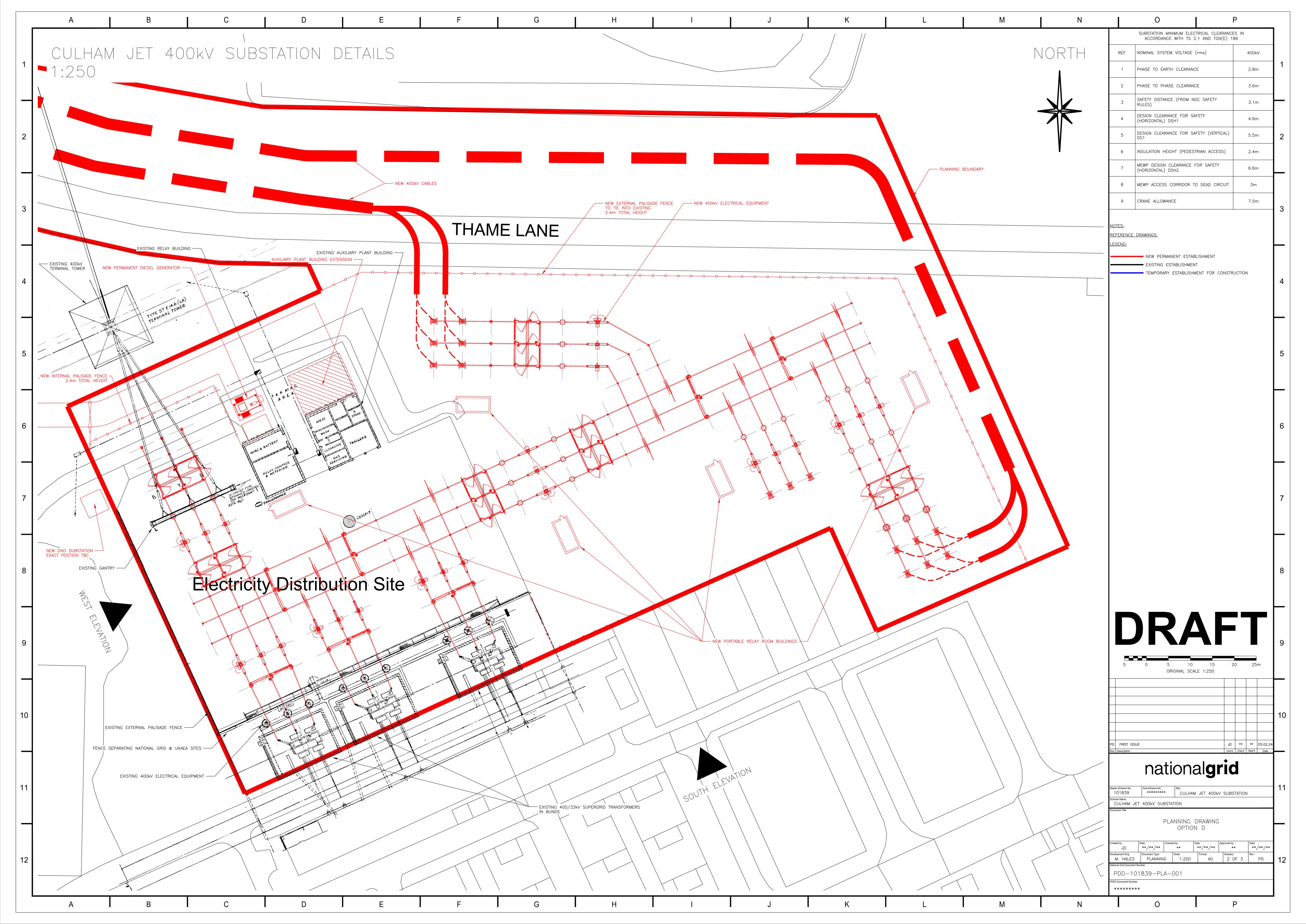
For information about how Oxfordshire County Council manages your personal information please see our <u>Privacy</u> <u>Notice.</u> Appendix C - Topographic Survey

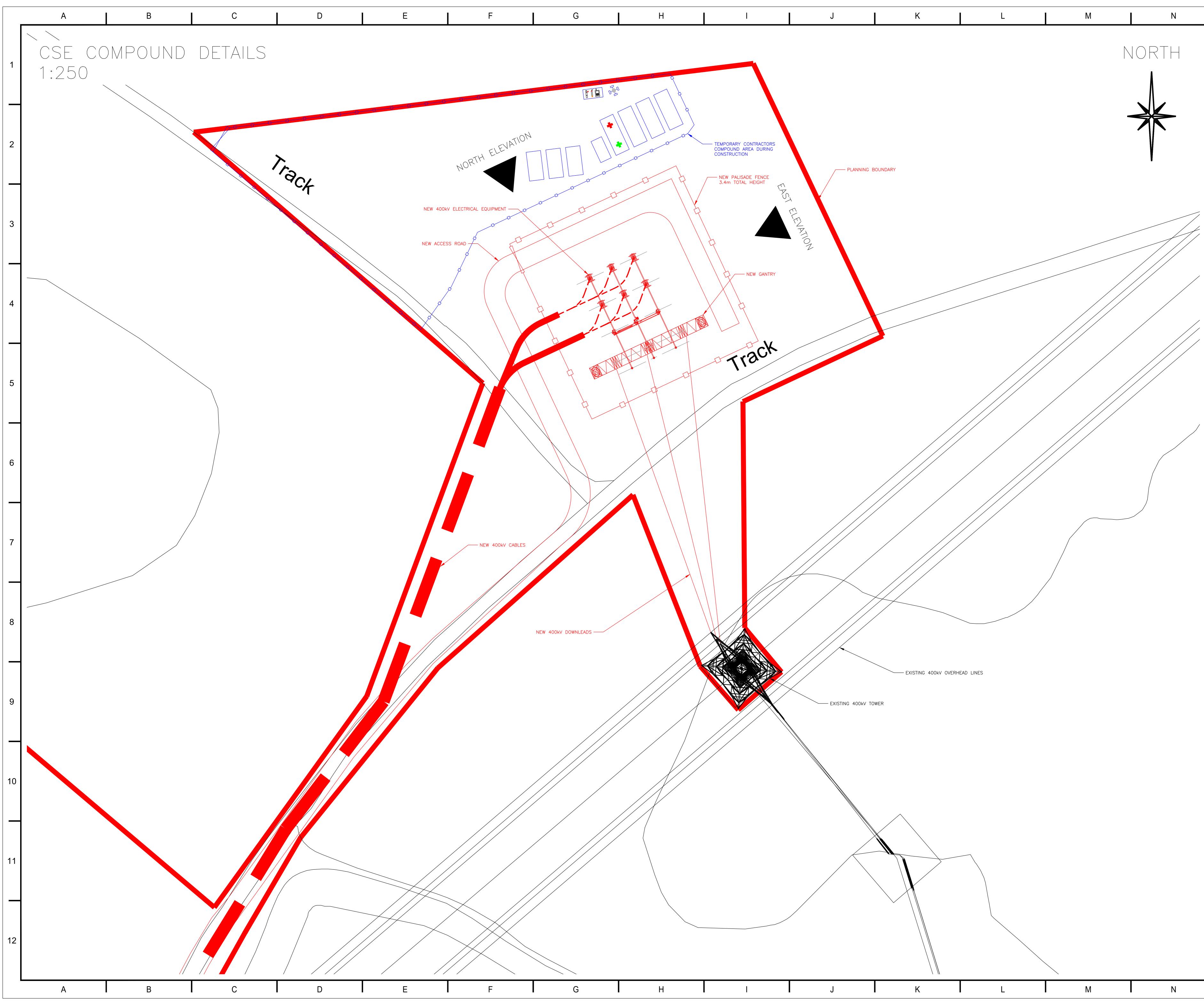


Appendix D – Development Plans

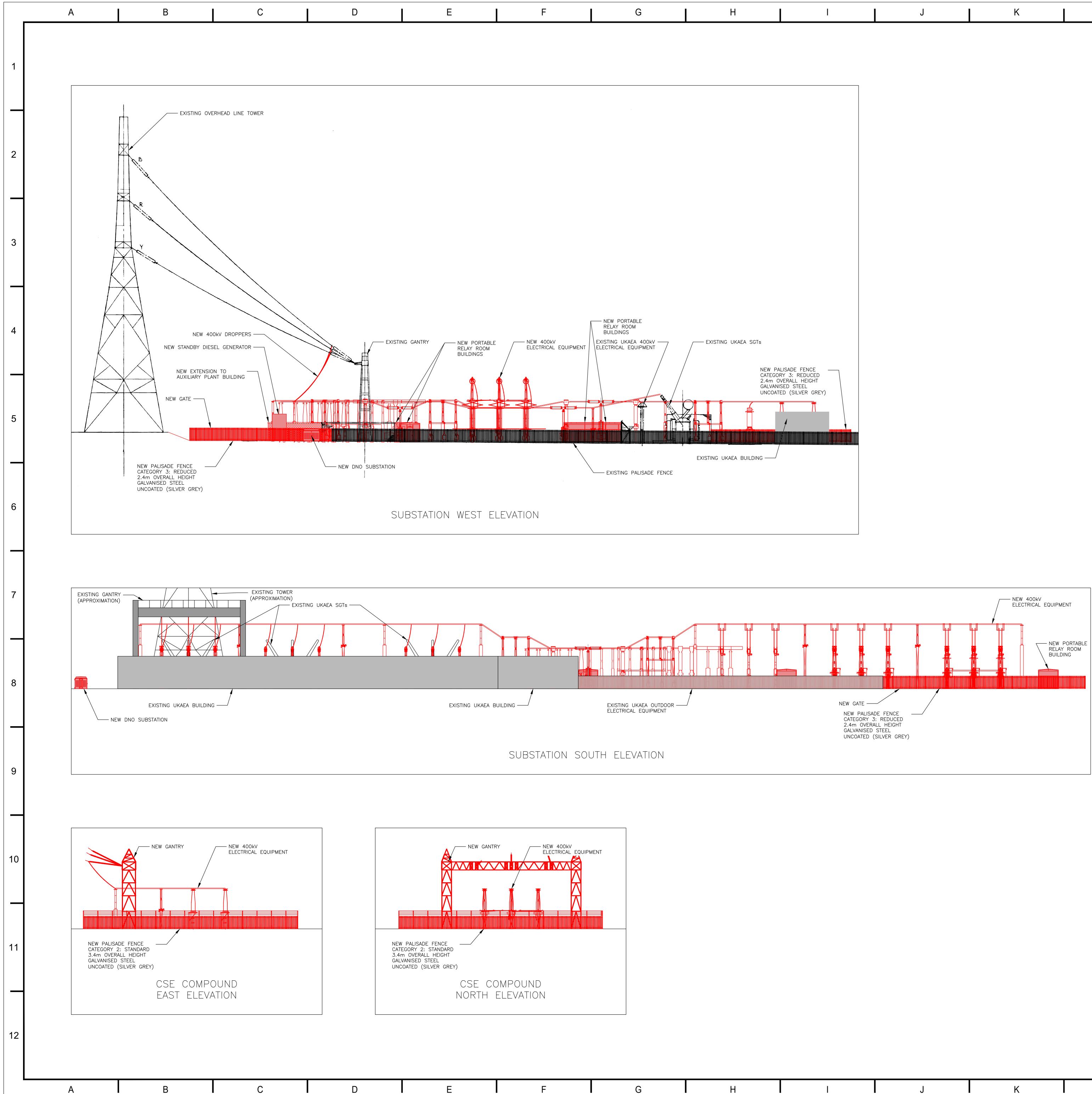



N		0	F	C			
10		SUBSTATION MINIMUM ELECTRICAL CLEAN ACCORDANCE WITH TS 2.1 AND TGN					
	REF	NOMINAL SYSTEM VOLTAGE (rms)			400k	×V	
	1	PHASE TO EARTH CLEARANCE			2.8r	n	1
	2	PHASE TO PHASE CLEARANCE			3.6r	n	
\searrow	3	SAFETY DISTANCE (FROM NGC SAFETY RULES)			3.1r	n	
	4	DESIGN CLEARANCE FOR SAFETY (HORIZONTAL) DSH1			4.6r	n	
	5	DESIGN CLEARANCE FOR SAFETY (VERTIC	CAL)		5.5r	n	2
· 御· 燕	6	INSULATION HEIGHT (PEDESTRIAN ACCESS	S)		2.4r	n	
	7	MEWP DESIGN CLEARANCE FOR SAFETY (HORIZONTAL) DSH2			6.6r	n	
	8	MEWP ACCESS CORRIDOR TO DEAD CIRC	CUIT		3m	1	
	9	CRANE ALLOWANCE			7.5r	n	
		ROUTES SHOWN AS PER LAYOUT OPTION T SHOWN AS PER OPTION D. NEW NATIONAL GRID PLANT NEW USER PLANT EXISTING PLANT HERAS FENCE SITE ESTABLISHMENT AREA (NATIONAL GRID SITE ESTABLISHMENT AREA (USER) NATIONAL GRID WORK AREA JSER WORK AREA /EHICLE ACCESS AYDOWN AREA MUSTER POINT NFO BOARD TEMPORARY LIGHTING FIRE POINT/ CLAXTON FIRST AID/ EYE WASH STATION SECURITY GUARD		С &	D.		2
		DRA					-
THE STATE	20	0 20 40 60 ORIGINAL SCALE 1:1000	8		10(Dm	ç
I NO STOR							1
			1		**	05.02.24	4
		CDM DETAILS FOR CSE COMPOUND	JD	**		170 11 07	
	P1 ADDED (P0 FIRST IS Rev Description		JD JD Cre'd	** AT Chk'd	CN App'd	30.11.23 Date	
	P0 FIRST IS	SUE	JD Cre'd	AT Chk'd			
	P0 FIRST IS Rev Description	SUE nationalgr Sub-Scheme No:	JD Cre'd	AT Chk'd	App'd		
	P0 FIRST IS Rev Description Master Scheme No: 101839 Scheme Name: CULHAM	nationalgr	JD Cre'd	AT Chk'd	App'd		
	P0 FIRST IS Rev Description Master Scheme No: 101839 Scheme Name:	SUE nationalgr Sub-Scheme No: ******** Site: CULHAM JET 400kV	JD Cre'd	AT Chk'd	App'd		
	P0 FIRST IS Rev Description Master Scheme No: 101839 Scheme Name: CULHAM Document Title: Document Title:	SUE SUE Sub-Scheme No: Site: ******* CULHAM JET 400kV JET 400kV SUBSTATION PROPOSED CDM LAYOU PROPOSED CDM LAYOU Date: 30/11/23 Checked by: Date: 30/11/23 At	JD Cre'd Cre'd SUBS		App'd		
	P0 FIRST IS Rev Description Master Scheme No: 101839 Scheme Name: CULHAM Document Title: Created by:	SUE SUE Sub-Scheme No: ******** Sub-Scheme No: ******** Sub-Scheme No: ******** Sub-Scheme No: ******** Site: CULHAM JET 400kV SUE Sub-Scheme No: ******** Sub-Scheme No: *********** Sub-Scheme No: ********* Sub-Scheme No: ********* Sub-Scheme No: ********* Sub-Scheme No: ********* Sub-Scheme No: ********* Sub-Scheme No: ********* Sub-Scheme No: ********* Sub-Scheme No: ********* Sub-Scheme No: ********* Sub-Scheme No: ********** Sub-Scheme No: ********** Sub-Scheme No: ********* Sub-Scheme No: ********* Sub-Scheme No: ******** Sub-Scheme No: ******** Sub-Scheme No: ******** Sub-Scheme No: **** Sub-Scheme No: ******** Sub-Scheme No: ******** Sub-Scheme No: ******* Sub-Scheme No: ******* Sub-Scheme No: ******* Sub-Scheme No: ****** Sub-Scheme No: ******* Sub-Scheme No: ****** Sub-Scheme No: ****** Sub-Scheme No: ****** Sub-Scheme No: ****** Sub-Scheme No: ***** Sub-Scheme No: ****** Sub-Scheme No: ****** Sub-Scheme No: ****** Sub-Scheme No: ***** Sub-Scheme No: ***** Sub-Scheme No: ***** Sub-Scheme No: ****** Sub-Scheme No: ****** Sub-Scheme No: ****** Sub-Scheme No: ***** Sub-Scheme No: ***** Sub-Scheme No: **** Sub-Scheme No: ***** Sub-Scheme No: **** Sub-Scheme No: **** Sub-Scheme No: **** Sub-Scheme No: **** Sub-Scheme No: *** Sub-Scheme No: **** Sub-Scheme No: *** Sub-Scheme No:	JD Cre'd Cre'd SUBS SUBS		App'd	Date	
	P0 FIRST IS Rev Description Master Scheme No: 101839 Scheme Name: CULHAM CULHAM 0 Document Title: JD Created by: JD Development Eng: M. HALES National Grid Docume 10	SUE SUE Inationalge Sub-Scheme No: Site: ******* CULHAM JET 400kV JET 400kV SUBSTATION JET 400kV SUBSTATION PROPOSED CDM LAYOU Date: Checked by: 30/11/23 AT 30/11/23 AT 30/11/23 Scale: LAY 1:1000 nt Number: 01839-LAY-006	JD Cre'd Cre'd SUBS SUBS	AT Chk'd	App'd N Date: 30,	Date	1


N			1
	SUBSTATION MINIMUM ELECTRICAL CLEARANCE ACCORDANCE WITH TS 2.1 AND TGN(E) 18		
	REF NOMINAL SYSTEM VOLTAGE (rms)	400kV	
	1 PHASE TO EARTH CLEARANCE	2.8m	
	2 PHASE TO PHASE CLEARANCE	3.6m	
	3 SAFETY DISTANCE (FROM NGC SAFETY RULES)	3.1m	⊢
	4 DESIGN CLEARANCE FOR SAFETY (HORIZONTAL) DSH1	4.6m	
	5 DESIGN CLEARANCE FOR SAFETY (VERTICAL) DS1	5.5m	
	6 INSULATION HEIGHT (PEDESTRIAN ACCESS)	2.4m	
	7 MEWP DESIGN CLEARANCE FOR SAFETY (HORIZONTAL) DSH2	6.6m	
	8 MEWP ACCESS CORRIDOR TO DEAD CIRCUIT	3m	
	9 CRANE ALLOWANCE	7.5m	-
	CABIN ID:		
	 MEETING ROOM OFFICE CHANGING ROOM WC/WASHING FACILITY MESS FACILITY STORE WORKSHOP DIESEL GENERATOR WITH BUNDED FUEL TANK & ENCL NOTES: CABLE ROUTES SHOWN AS PER LAYOUT OPTIONS B, LAYOUT SHOWN AS PER OPTION D. 		
	LEGEND:		
	NEW NATIONAL GRID PLANT		┡
	EXISTING PLANT HERAS FENCE		
	SITE ESTABLISHMENT AREA (NATIONAL GRID) SITE ESTABLISHMENT AREA (USER) NATIONAL GRID WORK AREA USER WORK AREA VEHICLE ACCESS		Ę
	LAYDOWN AREA MUSTER POINT		
	☐ INFO BOARD D TEMPORARY LIGHTING		Γ
	FIRE POINT/ CLAXTON		
	FIRST AID/ EYE WASH STATION		6
	SMOKING, VAPING & MOBILE PHONE SAFE AREA		
	DRAF		
	DRAF		
	2 0 2 4 6 8		
	2 0 2 4 6 8		
	2 0 2 4 6 8		Ç
	2 0 2 4 6 8		Ç
	2 0 2 4 6 8		1
	2 0 2 4 6 ORIGINAL SCALE 1:100	3 10m 3 10m 4 4 5 10m	1
	2 0 2 4 6 ORIGINAL SCALE 1:100	3 10m 3 10m 4 4 5 10m	1
	2 0 2 4 6 ORIGINAL SCALE 1:100	3 10m 3 10m 4 4 4 4 4 4 5 05.02.24 4 4 4	-
	2 0 2 4 6 ORIGINAL SCALE 1:100	3 10m 3 10m 4 4 4 4 4 4 5 05.02.24 4 4 4	1
	2 0 2 4 6 ORIGINAL SCALE 1:100	3 10m 3 10m 4 4 4 4 4 4 5 05.02.24 4 4 4	1
	2 0 2 4 6 6 2 0 2 4 6 6 0 ORIGINAL SCALE 1:100 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 10m 3 10m 4 4 4 4 5 10m 5 10m 5 10m 6 10m 7 10m <	1
	2 0 2 4 6 8 ORIGINAL SCALE 1:100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 10m 3 10m 4 10m 5 10m 5 10m 6 10m 7 10m	
	2 0 2 4 6 8 ORIGINAL SCALE 1:100 0 0 0 0 0 0 P1 ADDED CDM DETAILS FOR CSE COMPOUND JD JD 0 JD P0 FIRST ISSUE JD JD JD Rev Description Cred Cred Cultham JET 400kV SUBSTATION Master Scheme No: 101839 Site: CULHAM JET 400kV SUBSTATION Scheme Name: CULHAM JET 400kV SUBSTATION Document Title: PROPOSED CDM LAYOUT Created by: Date: 30/11/23 AT 30/11/23 C Development Eng: Document Type: Scale: Format: Sheet(s)	3 10m 3 10m 3 10m 4 4 4 4 5 10m 5 10m 5 10m 6 10m 7 10m	1



Ν		0		Ρ			
		SUBSTATION MINIMUM ACCORDANCE WITH			IN		
	REF	NOMINAL SYSTEM VOLTA	AGE (rms)		40	0kV	
	1	PHASE TO EARTH CLEA	RANCE		2.	8m	1
	2	PHASE TO PHASE CLEA	RANCE		3.	6m	
	3	SAFETY DISTANCE (FRO RULES)	M NGC SAFETY		3.	1m	
	4	DESIGN CLEARANCE FO (HORIZONTAL) DSH1	R SAFETY		4.	6m	
	5	DESIGN CLEARANCE FO	R SAFETY (VERTIC	CAL)	5.	5m	2
	6	INSULATION HEIGHT (PE	DESTRIAN ACCES	S)	2.	4m	
	7	MEWP DESIGN CLEARAN (HORIZONTAL) DSH2	CE FOR SAFETY		6.	6m	
	8	MEWP ACCESS CORRIDO	DR TO DEAD CIRC	CUIT	3	m	
	9	CRANE ALLOWANCE			7.	5m	
	CABIN ID:						3
	1. MEETING 2. OFFICE 3. CHANGI	NG ROOM					
	5. MESS F 6. STORE 7. WORKSH						
		GENERATOR WITH BUNDE	D FUEL TANK &	ENCLOS	URE		
		ROUTES SHOWN AS PER T SHOWN AS PER OPTIO		IS B, C	& D.		4
	LEGEND:						
		NEW NATIONAL GRID PLAN	IT				
	E	NEW USER PLANT EXISTING PLANT HERAS FENCE					
		BITE ESTABLISHMENT ARE/ BITE ESTABLISHMENT ARE/))			5
		JATIONAL GRID WORK ARE JSER WORK AREA /EHICLE ACCESS	ĒA				5
		AYDOWN AREA MUSTER POINT					
		NFO BOARD					
	_	TEMPORARY LIGHTING FIRE POINT/ CLAXTON					
	I	FIRST AID/ EYE WASH ST SECURITY GUARD	ATION				6
		SMOKING, VAPING & MOE	ILE PHONE SAFE	AREA			
/							
							7
							1
							8
)R					
							9
	4	0 4 ORIGINAL	8 12 SCALE 1:200	16	:	20m	
							10
	P1 ADDED (CDM DETAILS FOR CSE COMPOL	IND	JD	** *>	* 05.02.24	
	P0 FIRST IS	SUE			AT CI		
		natior	nal ar	id			
	Master Scheme No:	Sub-Scheme No: Site:		· 			11
	101839 Scheme Name: CULHAM	JET 400kV SUBSTATION	LHAM JET 400kV	SUBSTA	TION		
	Document Title:			1-			
		PROPOSED	CDM LAYOU	ור			
	Created by: JD Development Eng:	Date: Checked by: 30/11/23 AT Document Type: Scale:	Date: A 30/11/23 Format:	pproved by: CN Sheet(s):	Re	0/11/23	
	M. HALES	5 LAY 1:2		3 OF		P1	12
	PDD-1 FEED Document Num ******						
N	• • • • • • • • • • • •	0					



N		0	P	
		SUBSTATION MINIMUM ELECTRICAL CLEAR, ACCORDANCE WITH TS 2.1 AND TGN(E		
IORTH	REF	NOMINAL SYSTEM VOLTAGE (rms)	400kV	
	1	PHASE TO EARTH CLEARANCE	2.8m	1
	2	PHASE TO PHASE CLEARANCE	3.6m	
	3	SAFETY DISTANCE (FROM NGC SAFETY RULES)	3.1m	
	4	DESIGN CLEARANCE FOR SAFETY (HORIZONTAL) DSH1	4.6m	
	5	DESIGN CLEARANCE FOR SAFETY (VERTICA	L) 5.5m	2
	6	INSULATION HEIGHT (PEDESTRIAN ACCESS)) 2.4m	
	7	MEWP DESIGN CLEARANCE FOR SAFETY (HORIZONTAL) DSH2	6.6m	
	8	MEWP ACCESS CORRIDOR TO DEAD CIRCU	JIT 3m	
	9	CRANE ALLOWANCE	7.5m	3
	NOTES: REFERENCE LEGEND:	DRAWINGS: NEW PERMANENT ESTABLISHMENT EXISTING ESTABLISHMENT TEMPORARY ESTABLISHMENT FOR CON	ISTRUCTION	4
				6
				7
	20	DRAA 0 20 40 60 ORIGINAL SCALE 1:1000	80 100m	9
~				
				10
	P0 FIRST IS Rev Description		JD ** ** 05.02.24 Cre'd Chk'd App'd Date	
		Sub-Scheme No: ******** Site: CULHAM JET 400KV SUBSTATION		11
	Document Title:	PLANNING DRAWING		
	Created by: JD Development Eng:	**/**/** ** **/**/**	roved by: Date: ** */**/** Sheet(s): Rev:	
	M. HALES	S PLANNING 1:1000 A0	1 OF 3 PO	12
	PDD—1 FEED Document Num ******			
Ν		0	Ρ	

		Ν

E	F	G	Н		J	K	L	М	

E	F	G	Н	J	K	L	М

	SUBSTATION MINIMUM ELECTRICAL CLEARANCES IN		
REF	ACCORDANCE WITH TS 2.1 AND TGN(E) 186 NOMINAL SYSTEM VOLTAGE (rms)	400kV	
1	PHASE TO EARTH CLEARANCE	2.8m	1
2	PHASE TO PHASE CLEARANCE	3.6m	
3	SAFETY DISTANCE (FROM NGC SAFETY RULES)	3.1m	
4	DESIGN CLEARANCE FOR SAFETY (HORIZONTAL) DSH1	4.6m	
5	DESIGN CLEARANCE FOR SAFETY (VERTICAL) DS1	5.5m	
6	INSULATION HEIGHT (PEDESTRIAN ACCESS)	2.4m	
7	MEWP DESIGN CLEARANCE FOR SAFETY (HORIZONTAL) DSH2	6.6m	2
8	MEWP ACCESS CORRIDOR TO DEAD CIRCUIT	3m	
9	CRANE ALLOWANCE	7.5m	
NOTES:			
	DRAWINGS:		
LEGEND:	NEW PLANT		0
	EXISTING PLANT		Ĵ
			4
			-
			5
			6
			i i
			8
			8
			6
			8
)RAAF'		8
	DRAF		
	DRAF		
5	0 5 10 15 20	25m	
		25m	
	0 5 10 15 20	25m	
	0 5 10 15 20	25m	
	0 5 10 15 20	25m	ç
	0 5 10 15 20	25m	ç
5	0 5 10 15 20 ORIGINAL SCALE 1:250	25m	8 9
5 5 20 FIRST IS	0 5 10 15 20 ORIGINAL SCALE 1:250	<pre>** 05.02.24</pre>	ç
5 5 	0 5 10 15 20 ORIGINAL SCALE 1:250	<pre>** 05.02.24</pre>	ç
5 5 PO FIRST IS Rev Description	0 5 10 15 20 ORIGINAL SCALE 1:250	<pre>** 05.02.24</pre>	ç
5 5 PO FIRST IS Rev Description Master Scheme No: 101839 Scheme Name:	0 5 10 15 20 ORIGINAL SCALE 1:250 I I I SUE JD ** Cred Chec SUE-Scheme No: Site: ********* CullHAM JET 400kV SUBSTATION		ç
5 5 PO FIRST IS Rev Description Master Scheme No: 101839 Scheme Name: CULHAM	0 5 10 15 20 ORIGINAL SCALE 1:250		ç
5 5 PO FIRST IS Rev Description Master Scheme No: 101839 Scheme Name: CULHAM	0 5 10 15 20 ORIGINAL SCALE 1:250	Image: state	ç
5 5 P0 FIRST IS Rev Description Master Scheme No: 101839 Scheme Name: CULHAM Document Title:	0 5 10 15 20 ORIGINAL SCALE 1:250 JD 44 SUE JD 44 Cred Chec Inationalgrid		ç
5 5 P0 FIRST IS Rev Description Master Scheme No: 101839 Scheme Name:	0 5 10 15 20 ORIGINAL SCALE 1:250	Image: state	ç
5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 5 10 15 20 ORIGINAL SCALE 1:250 0 0 0 0 SUE JD 1 0 0 0 SUE JD ** 0 0 0 0 SUE JD ** 0 0 0 0 0 0 SUE JD ** 0	Date: ** /** /**	2 1 1
5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 5 10 15 20 ORIGINAL SCALE 1:250 SUE JD ** Cred Chkc SUE JD ** Cred Chkc Cred Chkc Cred Chkc Cred Chkc Cred Chkc Cred Chkc Stre: TANNING DRAWING EXISTING & PROPOSED ELEVATIONS PLANNING DRAWING EXISTING & PROPOSED ELEVATIONS PLANNING DRAWING EXISTING & PROPOSED ELEVATIONS PLANNING DRAWING EXISTING & PROPOSED ELEVATIONS Date: ********* Checked by: ** 200000000000000000000000000000000000	Date: **/**/** Date: **/**/** Rev:	ç

Appendix E – Ground Investigation Report

6th October 2022

Our ref: GE21162/SA01/221006

Oliver Troup Statera Energy 145 Kensington Church Street London W8 7LP

By email

Dear Oliver,

RE: Land to the rear of Culham Science Centre, Culham, Abingdon, OX14 3DB – Letter Report

1. Introduction

Further to your instruction, we write to present the findings of the intrusive investigation undertaken at land to the rear of Culham Science Centre, Culham, Abingdon, OX14 3DB (Figure 1).

2. Proposed Development

The proposed development is understood to comprise a battery energy storage facility with associated infrastructure including a number of stormwater basins.

3. Objectives

The investigation was undertaken to inform the emerging drainage strategy for the proposed development.

4. Site Description

The site was located at NGR 452888, 196448 and was formed by an irregularly shaped parcel of land comprising sections of two grazing fields. The fields were separated by a concrete track initially running east to west in the very south of the site, before turning to run in a north-north-east direction through the centre of the site. Topographically, the site sloped gently downhill to the south.

Two strings of overhead electricity cables supported by pylons ran across the site. One string ran north to south through the western part of the site with one supporting pylon located in the northwest of the site. The second string of cables ran along the south-eastern boundary before crossing the eastern extend of the site. Two inspection chamber covers were observed in the northwest of the site to the south of the pylon in this area. When lifted, these appeared to be former soakaways. A trunk water main was mapped running southwest to northeast through the east of the site. Although no visible evidence of this utility was recorded, it was possible to trace its location using radio-detection techniques during the investigation.

The majority of the site boundaries did not coincide with any physical feature with the exception of the western boundary which was formed by post and wire fencing and a deciduous hedgerow. Access to the site was afforded by an external perimeter track around the Science Park accessed via the industrial estate to the southwest of the site.

A railway line within a cutting was located to the west of the site. A continuation of grazing fields, some woodland and cover crop (maize) were located to the north and northeast. A raised area covered by long grass with a number of deciduous trees was located to the east with a large warehouse type building approximately 200m beyond. An electricity pylon and small mobile telecommunications compound, surrounded by timber closeboarded fencing was located immediately adjacent to the southeast of the site with Culham Science Park beyond. The Science Park was secured by tall metal mesh fencing. Two further electricity pylons were located to the south

Geo-Environmental Services Ltd Unit 7 Danworth Farm, Cuckfield Road, Hurstpierpoint, West Sussex BN6 9GL +44(0)1273 832972 www.gesl.net

Environmental Consultants | Geotechnical Engineers | Site Investigations

Geo-Environmental

of the site in an area of long grass. One of these was noted to connect to a large substation located within the Science Park.

5. Fieldwork

The scope of works agreed with the Client comprised:

- Attendance of a Geo-Environmental Engineer to set out and supervise the intrusive investigation, undertake logging of recovered soils from exploratory holes and in-situ testing.
- Construction of 3No. dynamic windowless sampler boreholes (WS1 to WS3) to depths of up to 5.00m bgl.
- Installation of the boreholes with 3No. monitoring standpipes with upstanding covers to allow for future groundwater monitoring.
- Construction of 4No. machine excavated trial pits (TP1 to TP4) to depths between 1.60m and 2.00m bgl.
- Soakage testing in accordance with BRE365 undertaken in trial pits TP1 to TP4.
- 3No. return groundwater monitoring visits.
- Provision of a Letter Report.

The intrusive investigation was carried out on 27th, 28th and 29th September 2022. The positions were agreed with the Client but adjusted on site to avoid overhead and underground utilities. The locations of the exploratory holes are shown on Figure 2.

6. Ground Conditions

The ground conditions encountered by the investigation comprised a mantle of Topsoil overlying Summertown-Radley Sand and Gravel Member. A generalised summary of the encountered conditions is presented in Table 1.

Top (m bgl)	Base (m bgl)	Geology	Locations
0.00	0.20 – 0.35	TOPSOIL: Brown or light brown fine and medium SAND with low or moderate proportions of silt and gravel with occasional or some rootlets.	All
0.20 – 0.35	>1.60 - >5.00	SUMMERTOWN-RADLEY SAND AND GRAVEL MEMBER: Typically orange brown, but occasionally brown or light orange brown, medium or medium and coarse SAND with low to moderate silt and gravel content. Moderate clay content occasionally recorded. Silt and gravel also absent on occasion. Greenish grey and grey colouration, some decayed 5-10mm roots and natural organic odour recorded from 1.00m to 1.70m bgl in TP4.	All

Table 1 Summary of Ground Conditions

For further details of the ground conditions encountered, reference should be made to the exploratory hole logs in Appendix A.

8. Groundwater

Groundwater was encountered within WS2 at 3.18m bgl immediately after drilling, rising to 3.30m bgl with the installed monitoring standpipe after 3.5 hours. Groundwater was recorded at 4.95m bgl in WS3 immediately after drilling but had dropped to a depth of greater than 5.00m bgl in the monitoring standpipe after 2.5 hours. No other groundwater was encountered during the intrusive investigation.

Groundwater monitoring standpipes were installed within WS1 to WS3 in order to facilitate return spot monitoring of groundwater levels . 3No. groundwater monitoring visits are planned, upon completion this report will be updated to include the data collected.

The groundwater level in the 3No. monitoring standpipes was measured on 29th September 2022 (the final day of the investigation and two days following installation). No groundwater was recorded within the depth of the installed standpipes with the exception of WS2 where the water depth was recorded at 3.01m bgl.

It should be noted that changes in groundwater and perched water levels do occur for a number of reasons including seasonal effects and variations in drainage. Such fluctuations may only be recorded by the measurement of the groundwater level within a series of standpipes or piezometers installed within appropriate response zones.

9. Obstructions

Boreholes WS1 and WS2 refused on dense strata at depths of 3.70m and 4.70m bgl respectively. No other natural or manmade obstructions were encountered. Obstructions elsewhere on the site cannot be completely ruled out.

10. Soakaways

Soakage testing in broad accordance with BRE365 was undertaken in trial pits TP1 to TP4. Testing was undertaken on 28th and 29th September 2022 for the two day test period agreed with the Client.

The results of the testing are summarised in Table 2 below. The soakage test results are included within Appendix B. In trial pits TP1 and TP3 Test 1 was abandoned, and Test 2 commenced at the end of the first day of testing when it became apparent that Test 1 would conclude during the night when accurate measurement would not be possible.

	Pit		Permeability (m/s)	
Location	depth (m bgl)	Test 1	Test 2	Test 3
TP1	1.70	2.6 x 10 ⁻⁶ *	2.6 x 10⁻ ⁶	1.9 x 10 ⁻⁶ *
TP2	1.90	1.4 x 10 ⁻⁵	1.1 x 10 ⁻⁵	8.7 x 10- ⁻⁶
TP3	1.60	3.3 x 10 ⁻⁶ *	2.9 x 10 ⁻⁶	2.8 x 10 ⁻⁶ *
TP4	2.00	2.7 x 10 ⁻⁶	Insufficient time to co	omplete further tests

NOTE: * - based on data extrapolation

Table 2 Soakage Test Results

In line with building control requirements soakaways should be located at least 5m from any structure.

11. Conditions

The data collected from the investigations have been used to provide an interpretation of the geotechnical and/or environmental conditions pertaining to the site. The recommendations and opinions expressed in this report are based on the data obtained. Geo-Environmental takes no responsibility for conditions that either have not been revealed in the available records, or that occur between or under points of physical investigation. Whilst every effort has been made to interpret the conditions, such information is only indicative and liability cannot be accepted for its accuracy.

A Discovery Strategy (Appendix C) should remain in force throughout groundworks and construction of the proposed development.

Information contained in this report is intended for the use of the Client and Geo-Environmental can take no responsibility for the use of this information by any party for uses other than that described in this report. Geo-Environmental makes no warranty or representation whatsoever express or implied with respect to the use of this information by any third party. Geo-Environmental does not indemnify the Client or any third parties against any dispute or claim arising from any finding or other result of this investigation report or any consequential losses.

This report remains the property of Geo-Environmental and the Client has no rights to, or reliance upon this document or supporting documents until such time as payment has been received in full for all invoices for works undertaken in connection with this report.

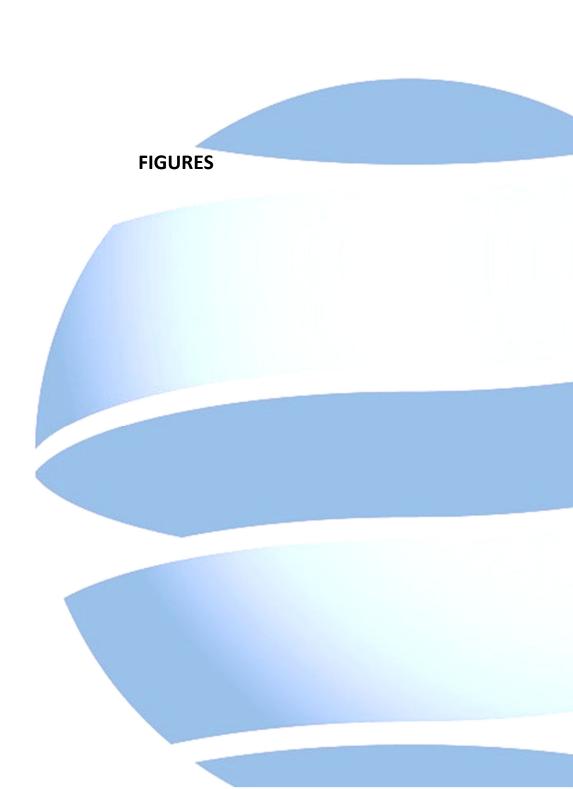
12. Closure

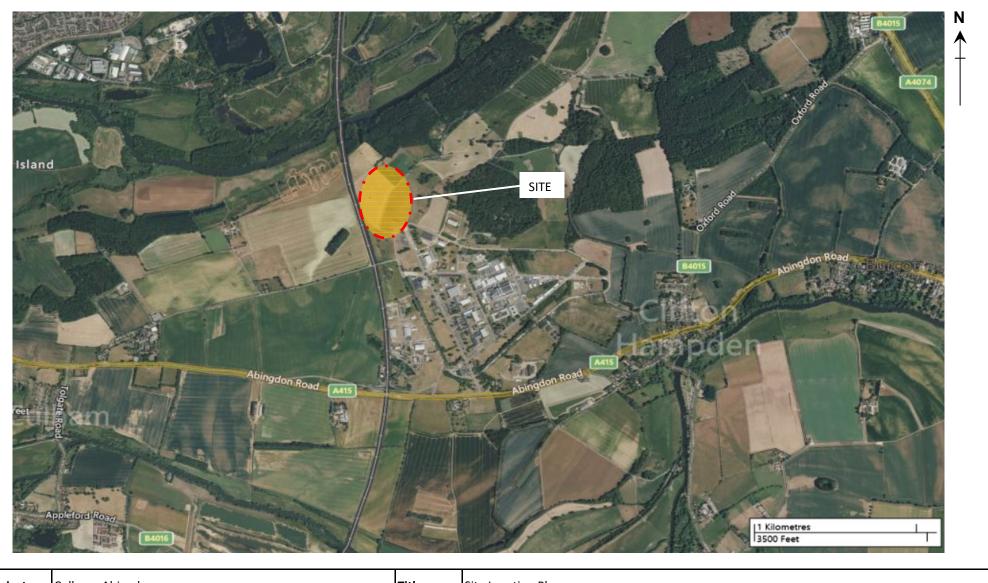
We trust that we have interpreted your instructions correctly. Please do not hesitate to contact us should you have any queries.

Yours sincerely For and on Behalf of Geo-Environmental

SHAUN ARMITAGE BSc (Hons), FGS Principal Consulting Engineer shaun.armitage@gesl.net

Enclosed - Figure 1 – Site Location Plan Figure 2 – Exploratory Hole Location Plan


> Appendix A – Exploratory Hole Logs Appendix B – Soakage Test Results Appendix C – Discovery Strategy





Project:	Culham, Abingdon			Title	Site Location Plan					
Client:	Statera Energy				Geo-Environmental Services Ltd					
Ref No:	GE21162	Version:	0.0		Unit 7 Danworth Farm, Cuckfield Road					
Drawn:	SA	Date:	05/10/2022		Hurstpierpoint, West Sussex BN6 9GL					
Figure:	1	Scale:	Not To Scale		+44(0)1273 832972 www.gesl.net	Geo-Environmental				

APPENDIX A

Exploratory Hole Logs

Geo-E	e nvironm	Unit 7, 1 Hurstpie BN6 9G entalwww.ge	erpoir SL			Во	reho	ole Log	Borehole N WS1 Sheet 1 of	
	t Name:	Culham,			Project No. GE21162		Co-ords:	453010E - 196474N	Hole Type WLS	Ð
Locatio	on:	Oxfordsh	iire, OX	(14 3DB			Level:		Scale 1:25	
Client:		Statera E	Energy				Dates:	27/09/2022	Logged By SA	у
Well	Water Strikes			Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptio	n	
		Depth (m)	Туре	Results	()	(,		Light brown silty slightly gravelly fine SAND with some rootlets.	and medium	
					0.20			TOPSOIL Orange brown slightly silty slightly gra SAND. Gravel is medium and coarse quartzite and various lithologies. SUMMERTOWN-RADLEY SAND AN MEMBER	subrounded	-
					0.90		XXXX	Orange brown slightly gravelly mediu SAND. Gravel is fine subrounded qua SUMMERTOWN-RADLEY SAND AN	artzite.	1 -
					1.20			MEMBER Orange brown medium and coarse S silt. SUMMERTOWN-RADLEY SAND AN MEMBER		-
					2.20			Orange brown slightly silty slightly gr		2 -
								and coarse SAND. Gravel is fine sub quartzite. SUMMERTOWN-RADLEY SAND AN MEMBER		3 -
					3.70			End of Borehole at 3.70n	n	4 -
										5 -
Dynamic Depth Top	Sampling Run Det Depth Base Dia		tails (mbgl Rose To	Remarks Refused at 3.7m. standpipe on 29		l ountered. N	lo groundwate	r in standpipe after 1.5 hours. No groundwa	ater in	L GS

Geo-E	e nvironm	Unit 7, D Hurstpie BN6 9Gl nentalwww.ges	L	arm	Во	reho	ole Log	Borehole N WS2 Sheet 1 of	
	t Name:	Culham, A		Project No. GE21162		Co-ords:	452896E - 196269N	Hole Type WLS	
Locatio	on:	Oxfordshir	re, OX14 3DB	i		Level:		Scale 1:25	
Client:		Statera Er	nergy			Dates:	27/09/2022	Logged By SA	у
Well	Water Strikes		and In Situ Te	(m)		Legend	Stratum Description	n	
	Suikes	Depth (m) T	ÿpe R	esults (III)			Brown slightly silty medium SAND wit	h some rootlets.	-
				0.30			TOPSOIL Light orange brown gravelly medium to fine occasionally coarse subrounded various lithologies. SUMMERTOWN-RADLEY SAND AN MEMBER	quartzite and	
				1.00			Orange brown gravelly medium SANE occasionally coarse subrounded quar lithologies. SUMMERTOWN-RADLEY SAND AN MEMBER	tzite and various	2
				3.10			Orange brown slightly silty gravelly m Gravel is fine occasionally coarse sub quartzite and various lithologies. SUMMERTOWN-RADLEY SAND AN MEMBER	prounded	3
				4.70			End of Borehole at 4.70m	1	5
-	Sampling Run De	ameter Depth Strike Ro	ose To Refused			ling. Groundw	ater at 3.30m in standpipe after 3.5 hours. G	iroundwater	GS

Geo-Environme	Unit 7, Dan Hurstpierpo BN6 9GL ^{ental} www.gesl.n	int		Во	oreho	ole Log	Borehole N WS3 Sheet 1 of	
Project Name:	Culham, Abing		Project No. GE21162		Co-ords:	452728E - 196561N	Hole Type WLS	;
Location:	Oxfordshire, C	X14 3DB			Level:		Scale 1:25	
Client:	Statera Energ	y			Dates:	27/09/2022 Logged B SA		y
Well Water Strikes		In Situ Testing	Depth	Level	Legend	Stratum Descripti	ion	
	Depth (m) Type	Results	(m)	(m)		Brown slightly silty gravelly medium	SAND with some	
			0.25 1.20 2.00 2.10 2.80			rootlets. TOPSOIL Orange brown occasionally brown s medium SAND. Gravel is fine subro and various lithologies. SUMMERTOWN-RADLEY SAND A MEMBER Orange brown slightly silty medium SUMMERTOWN-RADLEY SAND A MEMBER Orange brown clayey medium SAN subrounded quartzite gravel clast. SUMMERTOWN-RADLEY SAND A MEMBER Orange brown slightly silty medium SUMMERTOWN-RADLEY SAND A MEMBER Orange brown slightly silty medium SUMMERTOWN-RADLEY SAND A MEMBER Orange medium and coarse SAND. SUMMERTOWN-RADLEY SAND A MEMBER	ND GRAVEL SAND. ND GRAVEL D with one coarse ND GRAVEL SAND. ND GRAVEL SAND. ND GRAVEL	2 - 3 -
	alis Water Strike Details (mt	80 Remarks	5.00			End of Borehole at 5.00	Dm	4 -

Geo-Environmental	Contract Name: Culham, Abingo Contract Number GE21162	: D	0ate Started: 28/09/20	022	Logged By S	A	Checked B	G	Status: FINAL	Trial Pit I	TP1	
Trial Pit Log	Easting: 452866.0	N	lorthing: 196274		Ground Le	vel:	Plant Used JCB		Date Printed: 06/10/2022	Scale:	1:25	
Weather: Sunny		н	lole Termina		get depth re	eached		1	Sides stable			
Samples & In Situ T	esting	•				Strata [Netails				Ļ	
	-	Reduce	ed Depth (m)	Legend	1	Ollala		Descriptio	n		Water	Backfill
Depths Sample ID Te	st Result		ed Depth (m) (Thickness) (0.30) 0.30 (1.40) 1.70	Legenc	Brown s occasio TOPSO Orange Gravel i various	nal rootlets IL brown slig s fine occa lithologies. RTOWN-F	r slightly gra 3. ht silty sligh isionally coa RADLEY SA	tly gravell arse subro	um SAND with y medium SAND. unded quartzite and GRAVEL MEMBER			
Inclination: °							PhotoofPit		PI	hotoofSpoil	09/20	122 09:22

Trial Pit Log Easting: 452797.0 Northing: 196342.0 Ground Level: 196342.0 Plant Used: JCB 3CX Date Printed: 06/10/2022 Scale: 1.2 Weather: Sunny Hole Termination: Target depth reached Stability: Sides stable 12 Samples & In Situ Testing Strata Details Image: Strata Details	5 Backfi
Weather: Sunny Hole Termination: Target depth reached Stability: Sides stable Samples & In Situ Testing Strata Details gg Depths Sample ID Test Result Reduced Internation (Theorems) Legend Strata Description gg Image: Sample ID Test Result Reduced Internation (Theorems) Legend Internation (Theorems) Brown slightly sity slightly gravelly medium SAND with some rootets. TOPSOIL TOPSOIL	
Samples & In Situ Testing Strata Details Depths Semple ID Test Result Pediaded (Phickees) Legend (Phickees) Strata Description Frown slightly sity slightly gravely medium SAND with some rootlets. TOPSOIL 0.35 Orange brown slightly gravely medium SAND. Gravel is fine and medium subrounded quartzite and various lithologies. SUMMERTOWN-RADLEY SAND AND GRAVEL MEMBER 0.5 1.10 1.10 Brown slightly sily medium SAND with rare medium subrounded quartzite gravel. SUMMERTOWN-RADLEY SAND AND GRAVEL MEMBER 0.5 1.10 1.10 Orange brown medium SAND with rare medium subrounded quartzite gravel. SUMMERTOWN-RADLEY SAND AND GRAVEL MEMBER 1.5 1.10 0.400 0.400 0.400 1.50 0.6 1.90 End of Trial Pit at 1.90m 1.50 0.400 1.50 0.400	Backfi
Depths Sample ID Test Result Peduced Level Depth (m) (Triokness) Legend Strata Description Test Result Strata Description Test Result Strata Description Test Result Depth (m) (Triokness) Legend Strata Description Test Result Strata Description	Backfi
Image: Construction of the second	
Image: constraint of the second se	
(0.75) Orange brown sing signily gravelity medium SAND with rare medium subrounded quartzite and various lithologies. SUMMERTOWN-RADLEY SAND AND GRAVEL MEMBER 0.5 (0.75) I.10 Brown slightly silty medium SAND with rare medium subangular sandstone and subrounded quartzite gravel. 0.40) (0.40) Orange brown medium SAND with rare medium subangular sandstone and subrounded quartzite gravel. 1.50 (0.40) Orange brown medium SAND with rare medium subonunded quartzite gravel. 1.50 (0.40) SUMMERTOWN-RADLEY SAND AND GRAVEL MEMBER 1.5 (0.40) SUMMERTOWN-RADLEY SAND AND GRAVEL MEMBER 1.5 (0.40) SUMMERTOWN-RADLEY SAND AND GRAVEL MEMBER 1.5	
(0.75) SUMMERTOWN-RADLEY SAND AND GRAVEL MEMBER 0.5 (0.75) Brown slightly silty medium SAND with rare medium subangular sandstone and subrounded quartzite gravel. 1.0 (0.40) Brown slightly silty medium SAND with rare medium subangular sandstone and subrounded quartzite gravel. 1.5 (0.40) Orange brown medium SAND with rare medium subrounded quartzite gravel. 1.5 1.50 Orange brown medium SAND with rare medium subrounded quartzite gravel. 1.5 1.90 End of Trial Pit at 1.90m 1.5	
1.10 Brown slightly silty medium SAND with rare medium subangular sandstone and subrounded quartzite gravel. 1.0 (0.40) SUMMERTOWN-RADLEY SAND AND GRAVEL MEMBER 1.5 1.50 Orange brown medium SAND with rare medium subrounded quartzite gravel. 1.5 (0.40) SUMMERTOWN-RADLEY SAND AND GRAVEL MEMBER 1.5 1.50 Orange brown medium SAND with rare medium subrounded quartzite gravel. 1.5 1.90 End of Trial Pit at 1.90m 1.50	
1.10 Brown slightly silty medium SAND with rare medium subangular sandstone and subrounded quartzite gravel. (0.40) SUMMERTOWN-RADLEY SAND AND GRAVEL MEMBER 1.50 Orange brown medium SAND with rare medium subrounded quartzite gravel. (0.40) Orange brown medium SAND with rare medium subrounded quartzite gravel. (0.40) Interpretent of the same state of the same sta	
Image: State of the state	
1.50 Orange brown medium SAND with rare medium subrounded quartzite gravel. (0.40) SUMMERTOWN-RADLEY SAND AND GRAVEL MEMBER 1.90 End of Trial Pit at 1.90m	
(0.40) (0.40) (0.40) End of Trial Pit at 1.90m	
1.90 End of Trial Pit at 1.90m	
End of that 1.90m	
Dimensions: Photo:	

Geo-En	e vironmental	Contract Name: Culham, Abing Contract Number GE21162		ate Started: 28/09/2		Client Logged By: SA	S Checked	tatera En By: CG	ergy Status: FINAL	Trial Pit I	TP3	3
		Easting:	N	lorthing:		Ground Level:	Plant Use		Date Printed:	Scale:		
Veather: Su	al Pit Log	453042.0		196353		et depth reached		3CX	06/10/2022 Sides stable		1:25	
Weather. Ou	iiiiy		!'		luon. larg	er deptil reached	1	Otability.	Oldes stable			
	mples & In Situ	-				1	ta Details				Water	Backfill
Depths	Sample ID T	est Result	Reduce Level	ed Depth (m) (Thickness)	Legend			Descriptio	on lium SAND with		3	
- - - - - -				(0.30) 0.30		occasional roc TOPSOIL	medium SAN	D with a tra		-		
-				(0.90)						— 0.5 — — —		
- 				1.20		subrounded q	uartzite.		SAND. Gravel is fine GRAVEL MEMBER	1.0 		
-				(0.40)				rial Pit at 1.6		- 1.5		
- - - - -												
-										-		
-										- 2.5 - -		
-										3.0		
-										-		
- - - - -										— 3.5 — —		
						<u> </u>						
Dimensior						Photo:						
Final Depth:	1.60m	Length (m) 1.60m Orientation: ^c	 , 									
Inclination:	•						PhotoofPit		P	rhotoofSpoil	28/09/2	022 08:56

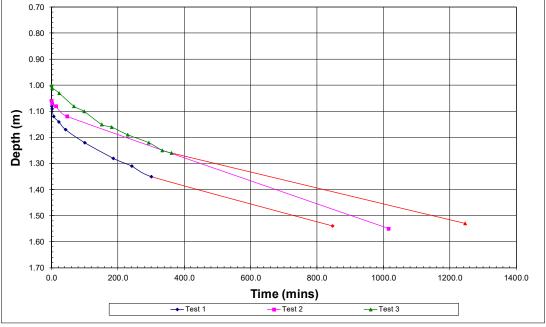
		Contract Name: Culham, Abing	Jdon				Client:		atera En		Trial Pit I	D: TP4	
Coo En	vironmenta	Contract Number		Date Started 28/09/2		Logged By S/		Checked E	sy: G	Status: FINAL			
Geo-En	vironmenta	Easting:		Northing:	022	Ground Lev		Plant Used		Date Printed:	Sheet 1 Scale:	of 1	
Tria	I Pit Log	452825.0		196462	2.0			JCB	3CX	06/10/2022		1:25	
Weather: Sun	ny		F	Hole Termina	ation: Tarç	get depth re	eached		Stability:	Sides stable			
Sai	mples & In Situ	u Testing					Strata	Details				er	
Depths	Sample ID	Test Result	Reduc Leve	el Depth (m) (Thickness	Legend	d		Strata	Descriptio	on		Water	Backfill
-						Brown s rootlets.		y slightly gra	velly med	ium SAND with some	_		
-				(0.30)		TOPSO					-		
-				0.30		Orange	brown slig	ghtly gravelly rounded qua	/ medium	and coarse SAND.			
-						SUMME	RTOWN-	RADLEY SA	AND AND	GRAVEL MEMBER	- 0.5		
-				(0.70)							-		
-				(0110)									
-													
-				1.00		Greenis	h grey and	d grey browi	n clayey n	nedium SAND with sor	ne 1.0		
-						decayed	1 5-10mm	roots. Sligh	t natural o	rganic odour. GRAVEL MEMBER			
-													
-				(0.70)							-		
-						<u>년</u> 종					— 1.5		
-				1.70									
-				(0.30)	$\times \times \times \times \times$	SUMME	brown silt RTOWN-	y medium a RADLEY SA	ND AND	SAND. GRAVEL MEMBER	-		
-					××××	X					-		
-				2.00				End of Tr	ial Pit at 2.0	0m	2.0		
-											-		
-											-		
-											- 2.5		
-											_ 2.5		
-											-		
-											-		
-											3.0		
-											-		
-											-		
F F													
- -											— 3.5		
-											$\left - \right $		
-													
Dimension	s:					Photo	:						
Final Depth:	2.00m												
	∢	Length (m)		▶									
		1.40m				a start		1.51	10		Catholes.		
								Mar .	Nelle	The second second	A CAR	all a	and the second
						Res		1		a state		The second	Ser.
E)	E	Orientation:	0				n the	Mar La		A BANK	2 a state		
Width (m)	0.45m	◀				Sec.						Star In	
						Ť				1 45 DE 9	eeco d		
						· Me			2209.072	10. The second i			6 A.
•	L]								
Inclination:	5							PhotoofPit		Ρ	hotoofSpoil		

APPENDIX B

Soakage Test Results

Geo-Environmental

U	Geo-EnvironmentalServices Limited Unit 7 Danworth Farm, Cuckfield Road, Hurstpierpoint, West Sussex BN6 9GL +44(0)1273 832972 www.gesl.net									
	Job No. : GE21162									


28/09/2022 - 29/09/2022

Date :

Project Name : Culham, Abingdon Client : Statera Energy

Pit reference	TP1		
Test reference	Test1	Test2	Test3
Pit depth (m)	1.70	1.70	1.70
Pit width (m)	0.45	0.45	0.45
Pit length (m)	1.70	1.70	1.70
Depth to standing water (m)			

Test 1		Test 2		-	Test 3	
Time (min)	Depth (m)	Time (min)	Depth (m)		Time (min)	Depth (m)
0.0	1.06	0.0	1.06		0.0	1.00
1.0	1.08	2.0	1.07		2.0	1.01
2.0	1.09	13.0	1.08		23.0	1.03
6.0	1.12	47.0	1.12		67.0	1.08
22.0	1.14	1015.0	1.55		98.0	1.10
42.0	1.17				151.0	1.15
100.0	1.22				181.0	1.16
186.0	1.28				229.0	1.19
242.0	1.31				293.0	1.22
301.0	1.35				333.0	1.25
847.0	1.54				361.0	1.26
					1246.0	1.53

Soil infiltration rate (mm/hr)	9.18E+00	9.21E+00	6.90E+00
Soil infiltration rate (m/s)	2.6E-06	2.6E-06	1.9E-06
tp 75-25	747.00	745.00	1026.00
ap 50	2.141	2.141	2.27
Vp 75-25	0.24	0.24	0.27
t25 (min)	847.00	1015.00	1246.00
t50 (min)	380.00	630.00	660.00
t75 (min)	100.00	270.00	220.00
25% effective depth (m)	1.54	1.54	1.53
50% effective depth (m)	1.38	1.38	1.35
75% effective depth (m)	1.22	1.22	1.18
Effective depth (m)	0.64	0.64	0.70
Max. depth (m)	1.70	1.70	1.70

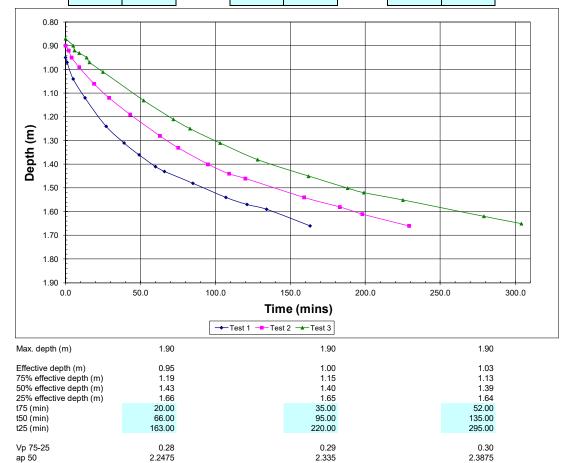
Notes:

Blue cells require input data Infiltration calculated to method in 'BRE Digest 365 (1991) - Soakaway Design' First line of table must be depth at time = 0 Extrapolated data shown in red

(after

28/09/2022 - 29/09/2022

Date :


Project Name : Culham, Abingdon Client : Statera Energy

Pit reference	TP2		
Test reference	Test1	Test2	Test3
Pit depth (m)	1.90	1.90	1.90
Pit width (m)	0.45	0.45	0.45
Pit length (m)	1.30	1.30	1.30
Depth to standing water (m)			

Test 1			Test 2	
Time (min)	Depth (m)		Time (min)	Depth (m)
0.0	0.95		0.0	0.90
1.0	0.97		2.0	0.92
5.0	1.04		4.0	0.95
13.0	1.12		9.0	0.99
27.0	1.24		19.0	1.06
39.0	1.31		29.0	1.12
49.0	1.36		43.0	1.19
60.0	1.41		63.0	1.28
66.0	1.43		75.0	1.33
85.0	1.48		95.0	1.40
107.0	1.54		109.0	1.44
121.0	1.57		120.0	1.46
134.0	1.59		159.0	1.54
163.0	1.66		183.0	1.58
			198.0	1.61
			229.0	1.66
		1		

Test 3					
Time (min)	Depth (m)				
0.0	0.87				
5.0	0.90				
6.0	0.92				
9.0	0.93				
14.0	0.95				
16.0	0.97				
25.0	1.01				
52.0	1.13				
72.0	1.21				
83.0	1.25				
103.0	1.31				
128.0	1.38				
162.0	1.45				
188.0	1.50				
199.0	1.52				
225.0	1.55				
279.0	1.62				
304.0	1.65				

243.00

tp 75-25 1.4E-05 8.7E-06 Soil infiltration rate (m/s) 1.1E-05 Soil infiltration rate (mm/hr) 5.19E+01 4.06E+01 3.12E+01

185.00

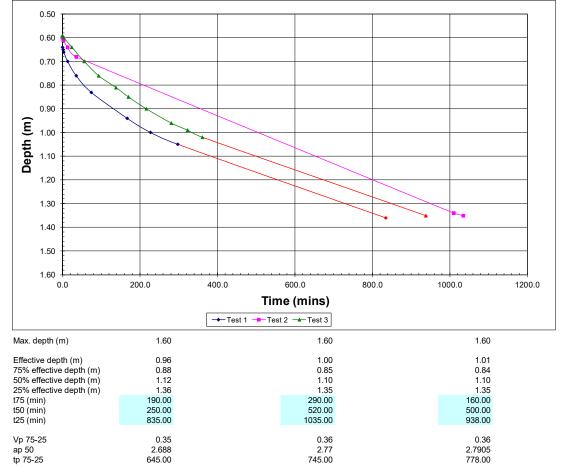
Notes:

Blue cells require input data

143.00

Infiltration calculated to method in 'BRE Digest 365 (1991) - Soakaway Design' First line of table must be depth at time = 0

1 2 3


Geo-Environmental

28/09/2022 - 29/09/2022

Project Name : Culham, Abingdon Client : Statera Energy

Pit reference	TP3		
Test reference	Test1	Test2	Test3
Pit depth (m)	1.60	1.60	1.60
Pit width (m)	0.45	0.45	0.45
Pit length (m)	1.60	1.60	1.60
Depth to standing water (m)			

Test 1		Test 2		-	Test 3	
Time (min)	Depth (m)	Time (min)	Depth (m)		Time (min)	Depth (m)
0.0	0.64	0.0	0.60		0.0	0.59
1.0	0.65	2.0	0.61		3.0	0.60
3.0	0.66	13.0	0.64		24.0	0.64
13.0	0.70	35.0	0.68		56.0	0.70
35.0	0.76	1010.0	1.34		93.0	0.76
74.0	0.83	1035.0	1.35		138.0	0.81
167.0	0.94				170.0	0.85
227.0	1.00				216.0	0.90
297.0	1.05				281.0	0.96
835.0	1.36				323.0	0.99
					361.0	1.02
					938.0	1.35

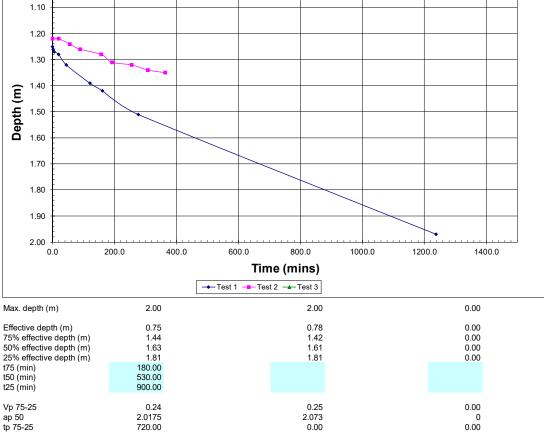
Soil infiltration rate (m/s)	3.3E-06	2.9E-06	2.8E-06
Soil infiltration rate (mm/hr)	1.20E+01	1.05E+01	1.00E+01

Notes:

Blue cells require input data

Infiltration calculated to method in 'BRE Digest 365 (1991) - Soakaway Design' First line of table must be depth at time = 0 Extrapolated data shown in red

Geo-Environmental


28/09/2022 - 29/09/2022

Date :

Project Name :	Culham, Abingdon
	Statera Epergy

Pit reference	TP4		
Test reference	Test1	Test2	Test3
Pit depth (m)	2.00	2.00	
Pit width (m)	0.45	0.45	
Pit length (m)	1.40	1.40	
Depth to standing water (m)			

Soil infiltration rate (m/s)	2.7E-06	
Soil infiltration rate (mm/hr)	76E+00	

Notes:

1 2 3

Blue cells require input data

First line of table must be depth at time = 0

APPENDIX C

Discovery Strategy

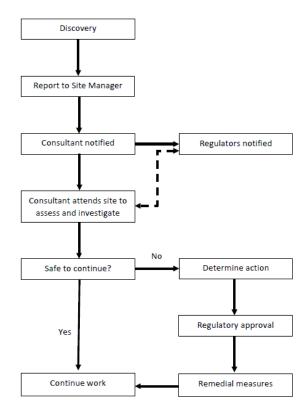
Discovery Strategy

Whilst an intrusive investigation has been undertaken on the site, it remains possible that unexpected ground and/or groundwater conditions may be encountered during the process of construction.

Should previously undiscovered contamination or unforeseen ground conditions be encountered during construction by the ground workers, this must be reported to the Site Manager immediately in order that the Consultant is notified.

Where deemed necessary, the Consultant shall attend the site to inspect the discovery and provide recommendations on the further actions required, if any. Where necessary the regulatory authority shall be informed. Post any additional investigation or laboratory testing the results and any proposed remedial measures shall be reported to the regulatory authority or other appropriate organisation for consent, before proceeding or implementing the remedial measures.

A copy of the discovery strategy must be lodged on site, and provisions made to ensure that all workers are made aware of their responsibility to observe, report, and act on any potentially suspicious, abnormal, unforeseen or contaminated ground and/or groundwater conditions they may encounter.


Depending on the type, nature and extent of any such 'discovery', it may be necessary to halt works in that location until such time as the assessment has been completed. This shall be reviewed on a 'discovery' specific basis and in conjunction with consultation with the client, other technical personnel and/or regulatory/approval organisations.

As a general guide, where such unexpected conditions are encountered the following approach is required as a minimum:

- All discoveries are to be reported to the Site Manager immediately and works at that location are to halt until further notice;
- The Site Manager is to report any such discoveries to the Client and the Consultant;
- Following notification from the Site Manager, the Consultant shall discuss the discovery with the Local Authority and/or other relevant parties and if considered necessary, arrange to meet on site to view the discovery;
- The Consultant shall attend the site to record the location, extent and nature of the discovery and implement an appropriate sampling and analysis regime, taking due account of the type and nature of the discovery, known and probable land uses in that area of the site;
- Where remedial action is required, regulatory consultation and approval will be sought;
- A record will be produced by the Consultant and held on site (with copies held by the Consultant, Client and Local Authority/other relevant organisation), detailing the discovery, assessment works undertaken, findings thereof, confirmation either of no action required or detailing the remedial action taken and validation thereof.

The process is summarised below:

Appendix F - Greenfield Runoff Rate

RPS Group Plc		Page 1
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 11/10/2024 20:42	Designed by JESSICA.GRADY	Drainage
File Basin Best Case Infiltr	Checked by	Diamage
Innovyze	Source Control 2020.1	·

ICP SUDS Mean Annual Flood

Input

Return Period (years)	100	Soil	0.300
Area (ha)	1.000	Urban	0.000
SAAR (mm)	600	Region Number	Region 6

Results 1/s

QBAR Rural 1.5 QBAR Urban 1.5 Q100 years 4.9

Q1 year 1.3 Q30 years 3.4 Q100 years 4.9

Appendix G – Conceptual Drainage Strategy

Appendix H - MicroDrainage Calculations

RPS Group Plc							Page 1
Noble House, Ca	pital Dri	ve					
Linford Wood							
Mitlton Keynes,	MK14 60	P					Micco
Date 04/11/2024			Designed	by TECCI		v	— Micro
				-	ICA.GRAI	JI	Drainag
File Attenuatio	n Blanket	- 0	Checked 1	-			Brainag
Innovyze			Source C	ontrol 20	020.1		
Sum	mary of Re	esults f	or 100 ye	ar Retur	n Perio	d (+40	<u>°)</u>
		Half Dra	in Time : 3	420 minute	s.		
Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth Ir	filtration	Control Σ	Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15 min Su	ummer 63.896	0.096	0.0	4.2	4.2	821.9	0 K
30 min Su	ummer 63.925	0.125	0.0	5.7	5.7	1073.0	0 K
60 min Su	mmer 63.956	0.156	0.0	6.1	6.1	1334.8	O K
120 min Su	mmer 63.988	0.188	0.0	6.2	6.2	1613.0	O K
180 min Su	ummer 64.007	0.207	0.0	6.2	6.2	1778.9	Flood Risk
240 min Su	ummer 64.020	0.220	0.0	6.2	6.2	1890.6	Flood Risk
360 min Su	ummer 64.036	0.236	0.0	6.2	6.2	2028.5	Flood Risk
100 min Cu	mmer 64.046	0 246	0.0				
480 MIIN SU	unner 04.040	0.240	0.0	6.2	6.2	2109.3	Flood Risk
	ummer 64.046		0.0	6.2 6.2			Flood Risk Flood Risk
600 min Su		0.252			6.2	2160.2	
600 min Su 720 min Su	ummer 64.052	0.252	0.0	6.2	6.2 6.2	2160.2 2192.9	Flood Risk
600 min Su 720 min Su 960 min Su	ummer 64.052 ummer 64.055	0.252 0.255 0.259	0.0	6.2 6.2	6.2 6.2 6.2	2160.2 2192.9 2225.1	Flood Risk Flood Risk
600 min Su 720 min Su 960 min Su 1440 min Su	ummer 64.052 ummer 64.055 ummer 64.059	0.252 0.255 0.259 0.260	0.0 0.0 0.0	6.2 6.2 6.2	6.2 6.2 6.2 6.2	2160.2 2192.9 2225.1 2228.8	Flood Risk Flood Risk Flood Risk
600 min Su 720 min Su 960 min Su 1440 min Su 2160 min Su	ummer 64.052 ummer 64.055 ummer 64.059 ummer 64.060	0.252 0.255 0.259 0.260 0.254	0.0 0.0 0.0 0.0	6.2 6.2 6.2 6.2	6.2 6.2 6.2 6.2 6.2	2160.2 2192.9 2225.1 2228.8 2177.2	Flood Risk Flood Risk Flood Risk Flood Risk
600 min Su 720 min Su 960 min Su 1440 min Su 2160 min Su 2880 min Su	ummer 64.052 ummer 64.055 ummer 64.059 ummer 64.060 ummer 64.054	0.252 0.255 0.259 0.260 0.254 0.246	0.0 0.0 0.0 0.0 0.0	6.2 6.2 6.2 6.2 6.2	6.2 6.2 6.2 6.2 6.2 6.2	2160.2 2192.9 2225.1 2228.8 2177.2 2113.0	Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk
600 min Su 720 min Su 960 min Su 1440 min Su 2160 min Su 2880 min Su 4320 min Su	ummer 64.052 ummer 64.055 ummer 64.059 ummer 64.060 ummer 64.054 ummer 64.046	0.252 0.255 0.259 0.260 0.254 0.246 0.237	0.0 0.0 0.0 0.0 0.0 0.0	6.2 6.2 6.2 6.2 6.2 6.2	6.2 6.2 6.2 6.2 6.2 6.2 6.2	2160.2 2192.9 2225.1 2228.8 2177.2 2113.0 2032.7	Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk
600 min Su 720 min Su 960 min Su 1440 min Su 2160 min Su 2880 min Su 4320 min Su 5760 min Su	ummer 64.052 ummer 64.055 ummer 64.059 ummer 64.060 ummer 64.054 ummer 64.046 ummer 64.037	0.252 0.255 0.259 0.260 0.254 0.246 0.237 0.230	0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2	6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2	2160.2 2192.9 2225.1 2228.8 2177.2 2113.0 2032.7 1976.5	Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk
600 min Su 720 min Su 960 min Su 1440 min Su 2160 min Su 2880 min Su 4320 min Su 5760 min Su 7200 min Su	ummer 64.052 ummer 64.055 ummer 64.059 ummer 64.060 ummer 64.054 ummer 64.046 ummer 64.037 ummer 64.030	0.252 0.255 0.259 0.260 0.254 0.246 0.237 0.230 0.225	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2	6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2	2160.2 2192.9 2225.1 2228.8 2177.2 2113.0 2032.7 1976.5 1935.4	Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk
600 min Su 720 min Su 960 min Su 1440 min Su 2160 min Su 2880 min Su 4320 min Su 5760 min Su 7200 min Su	ummer 64.052 ummer 64.055 ummer 64.059 ummer 64.060 ummer 64.054 ummer 64.037 ummer 64.030 ummer 64.025 ummer 64.021	0.252 0.255 0.259 0.260 0.254 0.246 0.237 0.230 0.225 0.221	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2	6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2	2160.2 2192.9 2225.1 2228.8 2177.2 2113.0 2032.7 1976.5 1935.4 1901.1	Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk

	Stor Even		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	153.813	0.0	265.7	27
30	min	Summer	100.662	0.0	379.3	42
60	min	Summer	62.851	0.0	764.3	72
120	min	Summer	38.216	0.0	914.4	130
180	min	Summer	28.256	0.0	976.0	190
240	min	Summer	22.648	0.0	1000.7	250
360	min	Summer	16.376	0.0	1005.6	370
480	min	Summer	12.909	0.0	990.4	490
600	min	Summer	10.688	0.0	973.3	608
720	min	Summer	9.138	0.0	955.7	728
960	min	Summer	7.104	0.0	920.4	966
1440	min	Summer	4.953	0.0	850.3	1444
2160	min	Summer	3.446	0.0	1772.4	2160
2880	min	Summer	2.670	0.0	1704.4	2512
4320	min	Summer	1.879	0.0	1511.4	3204
5760	min	Summer	1.476	0.0	2649.1	3984
7200	min	Summer	1.235	0.0	2712.8	4824
8640	min	Summer	1.075	0.0	2744.2	5616
10080	min	Summer	0.960	0.0	2725.1	6448
15	min	Winter	153.813	0.0	311.4	27
		©.	1982-202	20 Inno	vyze	

RPS Group Plc		Page 2
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 04/11/2024 08:34	Designed by JESSICA.GRADY	Nrainane
File Attenuation Blanket - O	Checked by	Diamage
Innovyze	Source Control 2020.1	1

Summary of Results for 100 year Return Period (+40%)

	Storn Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min	Winter	63.940	0.140	0.0	6.1	6.1	1202.0	ОК
60	min	Winter	63.974	0.174	0.0	6.2	6.2	1496.0	ОК
120	min	Winter	64.011	0.211	0.0	6.2	6.2	1809.1	Flood Risk
180	min	Winter	64.033	0.233	0.0	6.2	6.2	1995.9	Flood Risk
240	min	Winter	64.047	0.247	0.0	6.2	6.2	2122.2	Flood Risk
360	min	Winter	64.065	0.265	0.0	6.2	6.2	2278.9	Flood Risk
480	min	Winter	64.076	0.276	0.0	6.2	6.2	2371.8	Flood Risk
600	min	Winter	64.083	0.283	0.0	6.2	6.2	2431.0	Flood Risk
720	min	Winter	64.088	0.288	0.0	6.2	6.2	2469.9	Flood Risk
960	min	Winter	64.093	0.293	0.0	6.2	6.2	2510.9	Flood Risk
1440	min	Winter	64.094	0.294	0.0	6.2	6.2	2525.2	Flood Risk
2160	min	Winter	64.090	0.290	0.0	6.2	6.2	2485.0	Flood Risk
2880	min	Winter	64.082	0.282	0.0	6.2	6.2	2421.3	Flood Risk
4320	min	Winter	64.067	0.267	0.0	6.2	6.2	2293.6	Flood Risk
5760	min	Winter	64.057	0.257	0.0	6.2	6.2	2206.6	Flood Risk
7200	min	Winter	64.049	0.249	0.0	6.2	6.2	2133.9	Flood Risk
8640	min	Winter	64.041	0.241	0.0	6.2	6.2	2067.8	Flood Risk
10080	min	Winter	64.034	0.234	0.0	6.2	6.2	2007.0	Flood Risk

	Stor		Rain		Discharge	
	Even	τ	(mm/hr)	Volume (m³)	Volume (m³)	(mins)
				((111 -)	
30	min	Winter	100.662	0.0	432.3	41
60	min	Winter	62.851	0.0	856.5	70
120	min	Winter	38.216	0.0	988.7	130
180	min	Winter	28.256	0.0	1025.1	188
240	min	Winter	22.648	0.0	1027.1	246
360	min	Winter	16.376	0.0	1011.2	364
480	min	Winter	12.909	0.0	993.5	482
600	min	Winter	10.688	0.0	975.8	600
720	min	Winter	9.138	0.0	958.5	718
960	min	Winter	7.104	0.0	924.8	952
1440	min	Winter	4.953	0.0	860.2	1416
2160	min	Winter	3.446	0.0	1831.8	2096
2880	min	Winter	2.670	0.0	1741.5	2744
4320	min	Winter	1.879	0.0	1558.6	3460
5760	min	Winter	1.476	0.0	2948.1	4328
7200	min	Winter	1.235	0.0	3002.9	5256
8640	min	Winter	1.075	0.0	3010.8	6136
10080	min	Winter	0.960	0.0	2947.9	6968

RPS Group Plc		Page 3
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 04/11/2024 08:34	Designed by JESSICA.GRA	Drainage
File Attenuation Blanket - 0	Checked by	Diamaye
Innovyze	Source Control 2020.1	
<u></u>	<u>infall Details</u>	
Rainfall Mod	el	FEH
Return Period (year		100
FEH Rainfall Versi	on on GB 452975 196383 SU 52975	2013
Data Ty		Point
Summer Stor	ns	Yes
Winter Stor		Yes
Cv (Summe Cv (Winte		0.750 0.840
Shortest Storm (min	5)	15
Longest Storm (mir		10080
Climate Change	50	+40
Ti	ne Area Diagram	
Tot	al Area (ha) 2.860	
	ime (mins) Area Time (min om: To: (ha) From: To	
0 4 0.953	4 8 0.953 8	12 0.953
	·	
<u></u>	$R_{2}=2020$ Theorem	
©19	32-2020 Innovyze	

RPS Group Plc							Page	e 4
Noble House, Capital	l Drive							
Linford Wood								-
Mitlton Keynes, MK	14 6QP						Mic	
Date 04/11/2024 08:3	34	Desig	ned by JH	ESSICA.	GRADY			
File Attenuation Bla	anket - O.	Check	ed by				DIC	III Idy
Innovyze		Sourc	e Control	L 2020.	1			
		Model	<u>Details</u>					
	Storage is	s Online Co	over Level	(m) 64.3	00			
	<u>Infilt</u>	ration Bl	lanket St	ructure				
Infiltration (Diamete				
	Sa	fety Facto Porosit	r 2.0 y 0.30	Cap Volu	Length ne Depth			
	Inver	t Level (m		oup toru		(111)		
	<u>Hydro-Bra</u>	<u>ke® Optin</u>	num Outfle	<u>ow Cont</u>	rol			
			ence MD-SHE	2-0124-62				
		esign Head ign Flow (1			(0.500 6.2		
	2001	Flush-H			Calcul			
			cive Minim	ise upst				
		Applicat			Sui	face		
		Sump Availa Diameter				Yes 124		
	Inv	vert Level	. ,		63	3.800		
Minimum	Outlet Pipe	Diameter	(mm)			150		
Sugges	ted Manhole	Diameter	(mm)			1200		
	Control	l Points	Head (1	m) Flow	(1/s)			
Ι	Design Point				6.2			
			lo™ 0.1 lo® 0.3		6.2 5.5			
Ν	Mean Flow ov				5.1			
The hydrological calc Hydro-Brake® Optimum Hydro-Brake Optimum® invalidated	as specified be utilised	d. Should then these	another ty e storage r	rpe of co couting c	ntrol de alculati	evice (ons w	other ill be	than a
Depth (m) Flow (l/s)							Flow	
0.100 4.4 0.200 6.2		9.3 10.0			4.4 5.5	7.000		21.7 22.5
0.300 6.0		10.0			5.5 6.6	8.000		22.5
0.400 5.6		11.3			7.5	8.500		23.9
0.500 6.2	2.000	11.9	5.000	1	8.4	9.000		24.6
0.600 6.7		12.4			9.2	9.500		25.3
0.800 7.7 1.000 8.6		13.0 13.5			0.1			
1.000 8.0	2.000	12.3	0.500	Z	0.9			
			0 Innovyz					

RPS Group Plo	2						Page 1
Noble House,	Capital Drive						
Linford Wood	-						
	es, MK14 6QP						
Date 04/11/20			Deignod	by JESSI	CA CDAT	v	
					CA.GRAI	JI	Draina
	se Infiltration		hecked				
Innovyze		S	ource C	ontrol 20	20.1		
c	Summary of Resul	ts for	- 100 ve	ar Return	Perio	러 (+40%)	
<u>-</u>	-		-			<u>a (+100)</u>	_
	Hal	f Drain	Time : 1	152 minutes	5.		
	Storm	Max	Max Donth T	Max	Max	Status	
	Event	(m)	(m)	nfiltration (l/s)	(m ³)		
	15 min Summer	63 261	0 501	21 3	130/ 2	ОК	
	30 min Summer				1304.2	ОК	
	60 min Summer				2096.2	0 K	
	120 min Summer				2492.4		
	180 min Summer				2705.4		
	240 min Summer	63.790	1.030		2831.2	ΟK	
	360 min Summer			25.9	2945.0	O K	
	480 min Summer				2968.6		
	600 min Summer				2945.5		
	720 min Summer				2895.7		
	960 min Summer				2759.8	ОК	
	1440 min Summer				2513.2	ОК	
	2160 min Summer				2223.7		
	2880 min Summer 4320 min Summer				2003.9		
	5760 min Summer				1409.4		
	7200 min Summer				1205.7	0 K	
	8640 min Summer				1038.0		
	10080 min Summer				897.9		
	15 min Winter	63.319	0.559	21.7	1463.3	ОК	
	Stor		Rain	Flooded Ti			
	Eve	10	(mm/hr)	Volume (m³)	(mins)		
	15 min	Summer	153.813	0.0	26		
			153.813 100.662	0.0	26 41		
	30 min	Summer					
	30 min 60 min	Summer Summer	100.662	0.0	41		
	30 min 60 min 120 min	Summer Summer Summer	100.662 62.851	0.0	41 70		
	30 min 60 min 120 min 180 min 240 min	Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648	0.0 0.0 0.0 0.0 0.0	41 70 130 188 248		
	30 min 60 min 120 min 180 min 240 min 360 min	Summer Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648 16.376	0.0 0.0 0.0 0.0 0.0 0.0	41 70 130 188 248 366		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min	Summer Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648 16.376 12.909	0.0 0.0 0.0 0.0 0.0 0.0 0.0	41 70 130 188 248 366 484		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min	Summer Summer Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648 16.376 12.909 10.688	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	41 70 130 188 248 366 484 602		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min	Summer Summer Summer Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648 16.376 12.909 10.688 9.138	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	41 70 130 188 248 366 484 602 722		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min	Summer Summer Summer Summer Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648 16.376 12.909 10.688 9.138 7.104	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	41 70 130 188 248 366 484 602 722 864		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 720 min 960 min 1440 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648 16.376 12.909 10.688 9.138 7.104 4.953	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	41 70 130 188 248 366 484 602 722 864 1092		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 720 min 960 min 1440 min 2160 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648 16.376 12.909 10.688 9.138 7.104 4.953 3.446	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	41 70 130 188 248 366 484 602 722 864 1092 1480		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648 16.376 12.909 10.688 9.138 7.104 4.953 3.446 2.670	$\begin{array}{c} 0 & . \\$	41 70 130 188 248 366 484 602 722 864 1092 1480 1900		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648 16.376 12.909 10.688 9.138 7.104 4.953 3.446 2.670 1.879	$\begin{array}{c} 0 & . \\$	41 70 130 188 248 366 484 602 722 864 1092 1480 1900 2692		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648 16.376 12.909 10.688 9.138 7.104 4.953 3.446 2.670 1.879 1.476	$\begin{array}{c} 0 & . \\$	41 70 130 188 248 366 484 602 722 864 1092 1480 1900		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648 16.376 12.909 10.688 9.138 7.104 4.953 3.446 2.670 1.879 1.476 1.235	$\begin{array}{c} 0 & . \\$	41 70 130 188 248 366 484 602 722 864 1092 1480 1900 2692 3472		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648 16.376 12.909 10.688 9.138 7.104 4.953 3.446 2.670 1.879 1.476 1.235 1.075	$\begin{array}{c} 0 & . \\$	41 70 130 188 248 366 484 602 722 864 1092 1480 1900 2692 3472 4256		
	30 min 60 min 120 min 180 min 240 min 360 min 480 min 600 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min 8640 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	100.662 62.851 38.216 28.256 22.648 16.376 12.909 10.688 9.138 7.104 4.953 3.446 2.670 1.879 1.476 1.235 1.075	$\begin{array}{c} 0 & . \\$	41 70 130 188 248 366 484 602 722 864 1092 1480 1900 2692 3472 4256 5016		

RPS Group Plc							Page 2
Noble House, Capit	al Drive						
Linford Wood							
Mitlton Keynes, M	K14 60P						
Date 04/11/2024 08			Designe	d by JESS	TCA CD		Micro
				-	DICA.GR	ADI	Drainago
File Best Case Inf	iltratio	n 					J
Innovyze			Source (Control 2	2020.1		
C	r of Door	lta f	am 100	oom Dotu	on Dowi	ad (140%)	
Summar	<u>y of Res</u> t	ILLS IC	<u>5r 100 y</u>	ear Retui	n Peri	<u>od (+40%)</u>	
S	torm	Max	Max	Max	Мах	Status	
E	vent	Level	Depth Ind	Eiltration	Volume		
		(m)	(m)	(l/s)	(m³)		
30 *	nin Winter	63 177	0 717	23 0	1907.0	ΟK	
	nin Winter				2356.6	0 K	
	nin Winter				2809.2		
	nin Winter				3057.0	ОК	
	nin Winter				3206.8	O K	
360 m	nin Winter	63.959	1.199		3351.8	ОК	
480 n	nin Winter	63.972	1.212	27.1	3395.5	Flood Risk	
600 n	nin Winter	63.970	1.210	27.1	3387.1	Flood Risk	
	nin Winter				3348.9	O K	
	nin Winter				3222.5	0 K	
	nin Winter				2925.0	ОК	
	nin Winter				2563.9	ОК	
	nin Winter				2266.7	OK	
	nin Winter nin Winter				1790.4 1416.0	ОК	
	nin Winter				1121.0		
	nin Winter				881.2	ОК	
10080 n	nin Winter	63.029	0.269	19.4	683.9	0 K	
		orm		Flooded '		ak	
			(1111/112)	Volume	(mins)		
	1.		(1111)	(m ³)	(mins)		
	30 m.	in Winte	er 100.662	(m ³)	<u> </u>	11	
	30 m. 60 m.	in Winte	er 100.662 er 62.851	(m³) 2 0.0 . 0.0	<u>2</u>	70	
	30 m 60 m 120 m	in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216	(m ³) 2 0.0 5 0.0 5 0.0	2	70 28	
	30 m 60 m 120 m 180 m	in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0	2 7 12 18	70 28 36	
	30 m 60 m 120 m 180 m 240 m	in Winte in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 8 0.0	2 7 12 18 24	70 28 36 14	
	30 m 60 m 120 m 180 m 240 m 360 m	in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376	(m ³) 2 0.0 5 0.0 5 0.0 6 0.0 8 0.0 5 0.0	2 7 12 18	70 28 36 14 50	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m	in Winte in Winte in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909	(m ³) 2 0.0 5 0.0 5 0.0 8 0.0 5 0.0 5 0.0 9 0.0	2 7 12 18 24 36	70 28 36 14 50 74	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 600 m	in Winte in Winte in Winte in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688	(m ³) 2 0.0 5 0.0 5 0.0 8 0.0 5 0.0 5 0.0 9 0.0 8 0.0	2 7 12 18 24 36 47	70 28 36 14 50 74 88	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 600 m 720 m	in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104	(m ³) 2 0.0 5 0.0 5 0.0 6 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9 0.0 9 0.0 9 0.0 9 0.0	4 12 18 24 36 47 58 70 91	70 28 36 14 50 74 38 90 00 6	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 600 m 720 m 960 m	in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104 er 4.953	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9	24 12 18 24 36 47 58 70 91 115	70 28 36 14 50 74 38 00 2.6 54	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m	in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104 er 4.953 er 3.446	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9	24 12 18 24 36 47 58 70 91 115 160	70 28 36 44 50 74 88 90 26 54 94	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m 2160 m	in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104 er 4.953 er 3.446 er 2.670	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9	24 12 18 24 36 47 58 70 91 115 160 205	70 28 36 14 50 74 38 90 26 54 94 52	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m 2160 m 2880 m	in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104 er 4.953 er 3.446 er 2.670 er 1.879	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9	24 12 18 24 36 47 58 70 91 115 160 205 290	70 28 36 44 50 74 88 90 66 54 94 52 94	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m	in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104 er 4.953 er 3.446 er 2.670 er 1.879 er 1.476	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9	24 12 18 24 36 47 58 70 91 115 160 205 290 374	70 28 36 44 50 74 88 90 26 54 54 52 94 44	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104 er 4.953 er 3.446 er 2.670 er 1.879 er 1.476 er 1.235	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9	24 12 18 24 36 47 58 70 91 115 160 205 290	70 28 36 14 50 74 38 00 54 54 52 04 52 04 44 36	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104 er 4.953 er 3.446 er 2.670 er 1.879 er 1.476 er 1.235 er 1.075	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9	24 12 18 24 36 47 58 70 91 115 160 205 290 374 453	70 28 36 14 50 74 38 00 54 54 52 04 52 04 44 86 30	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 240 m 280 m 4320 m 5760 m 7200 m	in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104 er 4.953 er 3.446 er 2.670 er 1.879 er 1.476 er 1.235 er 1.075	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9	24 12 18 24 36 47 58 70 91 115 160 205 290 374 453 528	70 28 36 14 50 74 38 00 54 54 52 04 52 04 44 86 30	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 240 m 280 m 4320 m 5760 m 7200 m	in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104 er 4.953 er 3.446 er 2.670 er 1.879 er 1.476 er 1.235 er 1.075	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9	24 12 18 24 36 47 58 70 91 115 160 205 290 374 453 528	70 28 36 14 50 74 38 00 54 54 52 04 52 04 44 86 30	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 240 m 280 m 4320 m 5760 m 7200 m	in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104 er 4.953 er 3.446 er 2.670 er 1.879 er 1.476 er 1.235 er 1.075	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9	24 12 18 24 36 47 58 70 91 115 160 205 290 374 453 528	70 28 36 14 50 74 38 00 54 54 52 04 52 04 44 86 30	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 240 m 280 m 4320 m 5760 m 7200 m	in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104 er 4.953 er 3.446 er 2.670 er 1.879 er 1.476 er 1.235 er 1.075	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9	24 12 18 24 36 47 58 70 91 115 160 205 290 374 453 528	70 28 36 14 50 74 38 00 54 54 52 04 52 04 44 86 30	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 240 m 280 m 4320 m 5760 m 7200 m	in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104 er 4.953 er 3.446 er 2.670 er 1.879 er 1.476 er 1.235 er 1.075	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9	24 12 18 24 36 47 58 70 91 115 160 205 290 374 453 528	70 28 36 14 50 74 38 00 54 54 52 04 52 04 44 86 30	
	30 m 60 m 120 m 180 m 240 m 360 m 480 m 720 m 240 m 280 m 4320 m 5760 m 7200 m	in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte in Winte	er 100.662 er 62.851 er 38.216 er 28.256 er 22.648 er 16.376 er 12.909 er 10.688 er 9.138 er 7.104 er 4.953 er 3.446 er 2.670 er 1.879 er 1.476 er 1.235 er 1.075	(m ³) 2 0.0 5 0.0 5 0.0 5 0.0 6 0.0 6 0.0 8 0.0 8 0.0 8 0.0 8 0.0 8 0.0 9	24 12 18 24 36 47 58 70 91 115 160 205 290 374 453 528	70 28 36 14 50 74 38 00 54 54 52 04 52 04 44 86 30	

RPS Group Plc			Page 3
Noble House, Capital Drive			
Linford Wood			
Mitlton Keynes, MK14 6QP			
Date 04/11/2024 08:41	Designed by JH	COTCA CDADY	– Micro
File Best Case Infiltration		1991CA.GRADI	Drainage
	-	0000 1	
Innovyze	Source Control	1 2020.1	
	<u>Rainfall Details</u>		
Rainfall M Return Period (ye		FEH 100	
FEH Rainfall Ver		2013	
	tion GB 452975 1963		
Data	Туре	Point	
Summer St		Yes	
Winter St		Yes	
Cv (Sum Cv (Win	,	0.750 0.840	
CV (Win Shortest Storm (m	,	0.840	
Longest Storm (m		10080	
Climate Chan		+40	
	Lime Area Diagram	<u>1</u>	
	otal Area (ha) 4.610		
	Time (mins) Area		
		From: To: (ha)	
0 4 1.537	4 8 1.537	8 12 1.537	
	1982-2020 Innovyz		

RPS Group Plc		Page 4
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 04/11/2024 08:41	Designed by JESSICA.GRADY	Drainage
File Best Case Infiltration	Checked by	Diamade
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 64.260

Infiltration Basin Structure

Invert Level (m) 62.760 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.05040 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.05040

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 2466.5 1.500 3322.4

RPS Group Plc						Page 1
Noble House, Capital Drive						
Linford Wood						
Mitlton Keynes, MK14 6QP						Micco
Date 04/11/2024 08:44		Designed	l by JESSI	CA. GRAI	אר	
File Worst Case Infiltration		Checked	-	0111 0111		Draina
			Control 20	20 1		
Innovyze	1	Source c	20111101 20	20.1		
Summary of Resul	lts fo	r = 100 vc	aar Roturr	Perio	러 (+40%)	
Summary of Resul	103 10	<u>1 100 y</u> e	ear Neturi	I TELTO	<u>a (1908)</u>	
Hal	f Drain	n Time : 1	1872 minute	з.		
Storm	Max		Max	Max	Status	
Event	(m)	(m)	infiltration (1/s)	(m ³)		
	(111)	(111)	(1/3)	(111)		
15 min Summer				1312.8		
30 min Summer				1712.7		
60 min Summer				2122.0		
120 min Summer 180 min Summer				2543.4		
240 min Summer 240 min Summer			16.8			
360 min Summer				3097.4		
480 min Summer	63.82	7 1.067		3170.1		
600 min Summer	63.83	5 1.075		3195.2		
720 min Summer			17.2	3191.8	O K	
960 min Summer			17.1	3134.6	ΟK	
1440 min Summer				2938.5		
2160 min Summer 2880 min Summer				2676.1		
4320 min Summer				2184.1		
5760 min Summer				1969.8		
7200 min Summer	63.39	4 0.634		1803.3		
8640 min Summer			14.6	1665.0	O K	
10080 min Summer 15 min Winter			14.4			
	03.20	5 0.525	14.5	1471.9	ОК	
Sto. Eve		Rain (mm/hr)	Flooded Ti	.me-Peak		
		(11011) 111)	Volume	(mins)		
		(111)	Volume (m³)	(mins)		
15 mir	1 Summe	r 153.813	(m³)	(mins) 27		
			(m³) 0.0			
30 mir		r 153.813 r 100.662	(m ³) 0.0 0.0	27		
30 mir 60 mir 120 mir	n Summe n Summe n Summe	r 153.813 r 100.662 r 62.851 r 38.216	(m ³) 0.0 0.0 0.0 0.0	27 41 72 130		
30 mir 60 mir 120 mir 180 mir	Summe Summe Summe Summe	r 153.813 r 100.662 r 62.851 r 38.216 r 28.256	(m ³) 0.0 0.0 0.0 0.0	27 41 72 130 190		
30 mir 60 mir 120 mir 180 mir 240 mir	Summe Summe Summe Summe Summe	r 153.813 r 100.662 r 62.851 r 38.216 r 28.256 r 22.648	(m ³) 0.0 0.0 0.0 0.0 0.0	27 41 72 130 190 250		
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir	Summe Summe Summe Summe Summe Summe	r 153.813 r 100.662 r 62.851 r 38.216 r 28.256 r 22.648 r 16.376	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	27 41 72 130 190 250 368		
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir	A Summe A Summe A Summe A Summe A Summe A Summe A Summe	r 153.813 r 100.662 r 62.851 r 38.216 r 28.256 r 22.648 r 16.376 r 12.909	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	27 41 72 130 190 250		
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 153.813 r 100.662 r 62.851 r 38.216 r 28.256 r 22.648 r 16.376 r 12.909 r 10.688	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	27 41 72 130 190 250 368 486		
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 153.813 r 100.662 r 62.851 r 38.216 r 28.256 r 22.648 r 16.376 r 12.909 r 10.688 r 9.138	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	27 41 72 130 190 250 368 486 606		
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 153.813 r 100.662 r 62.851 r 38.216 r 28.256 r 22.648 r 16.376 r 12.909 r 10.688 r 9.138 r 7.104 r 4.953	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	27 41 72 130 190 250 368 486 606 724		
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 153.813 r 100.662 r 62.851 r 38.216 r 28.256 r 22.648 r 16.376 r 12.909 r 10.688 r 9.138 r 7.104 r 4.953 r 3.446	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	27 41 72 130 190 250 368 486 606 724 962 1348 1672		
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 153.813 r 100.662 r 62.851 r 38.216 r 28.256 r 22.648 r 16.376 r 12.909 r 10.688 r 9.138 r 7.104 r 4.953 r 3.446 r 2.670	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	27 41 72 130 190 250 368 486 606 724 962 1348 1672 2052		
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 153.813 r 100.662 r 62.851 r 38.216 r 28.256 r 22.648 r 16.376 r 12.909 r 10.688 r 9.138 r 7.104 r 4.953 r 3.446 r 2.670 r 1.879	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	27 41 72 130 190 250 368 486 606 724 962 1348 1672 2052 2860		
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 600 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 153.813 r 100.662 r 62.851 r 38.216 r 28.256 r 22.648 r 16.376 r 12.909 r 10.688 r 9.138 r 7.104 r 4.953 r 3.446 r 2.670 r 1.879 r 1.476	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	27 41 72 130 190 250 368 486 606 724 962 1348 1672 2052 2860 3688		
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 153.813 r 100.662 r 62.851 r 38.216 r 28.256 r 22.648 r 16.376 r 12.909 r 10.688 r 9.138 r 7.104 r 4.953 r 3.446 r 2.670 r 1.879 r 1.476 r 1.235	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	27 41 72 130 190 250 368 486 606 724 962 1348 1672 2052 2860		
30 mir 60 mir 120 mir 180 mir 240 mir 360 mir 480 mir 720 mir 960 mir 1440 mir 2160 mir 2880 mir 4320 mir 5760 mir 7200 mir	A Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe Summe	r 153.813 r 100.662 r 62.851 r 38.216 r 28.256 r 22.648 r 16.376 r 12.909 r 10.688 r 9.138 r 7.104 r 4.953 r 3.446 r 2.670 r 1.879 r 1.476 r 1.235 r 1.075	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	27 41 72 130 190 250 368 486 606 724 962 1348 1672 2052 2860 3688 4472		

RPS Group Plc							Page 2
Noble House, Ca	apital Drive						
Linford Wood							
Mitlton Keynes,	, MK14 6QP						Micro
Date 04/11/2024 08:44			Designed by JESSICA.GRADY Checked by				
File Worst Case Infiltration		Drainage					
			Source Control 2020.1				_
Innovyze			Source	Jontrol 2	2020.1		
Sur	<u>nmary of Resu</u>	alts fo	or 100 y	ear Retui	rn Peri	_od (+40%)	
	-		-				
	Storm	Max	Max	Max	Max	Status	
	Event		-	filtration			
		(m)	(m)	(1/s)	(m³)		
	30 min Winter	63.433	0.673	15.1	1921.3	ОК	
	60 min Winter				2382.8	ОК	
	120 min Winter				2860.4		
-	180 min Winter	63.816	1.056	17.1	3133.5	ОК	
	240 min Winter	63.869	1.109	17.4	3308.7	ΟK	
:	360 min Winter	63.928	1.168		3504.5	0 K	
	480 min Winter	63.956	1.196	17.9	3597.7	O K	
	600 min Winter			17.9	3637.2	Flood Risk	
	720 min Winter	63.970	1.210	17.9	3645.0	Flood Risk	
2	960 min Winter	63.958	1.198	17.9	3604.3	0 K	
14	440 min Winter	63.905	1.145	17.6	3428.5	O K	
23	160 min Winter	63.810	1.050	17.1	3114.8	O K	
28	880 min Winter	63.736	0.976	16.7	2871.4	O K	
4.3	320 min Winter	63.614	0.854	16.0	2484.6	O K	
	760 min Winter			15.5	2176.6	O K	
	200 min Winter				1927.9		
	640 min Winter 080 min Winter				1716.8 1535.1	ОК	
		orm		Flooded		ak	
	Ev	ent	(mm/hr)	Volume (m³)	(mins)		
			er 100.662 er 62.852			11 70	
		.n Winte .n Winte			12		
		.n Winte			12		
		.n Winte			24		
		.n Winte			36		
		n Winte			47		
		n Winte			59		
		.n Winte			71		
	960 mi	n Winte	er 7.104	1 0.0	93	38	
		n Winte		3 0.0	137	78	
		n Winte			176		
		n Winte			219		
		n Winte			311		
		n Winte			398		
		n Winte			483		
		n Winte			570		
	10080 mi	winte	er 0.960	0.0	646	94	

RPS Group Plc			Page 3
Noble House, Capital Drive			_
Linford Wood			
Mitlton Keynes, MK14 6QP			Micco
Date 04/11/2024 08:44	Designed by J	ECCICA CDADY	– Micro
		LOSICA.GRADI	Drainage
File Worst Case Infiltration	4		
Innovyze	Source Contro	1 2020.1	
Ī	Rainfall Details		
Rainfall Mo	odel	FEH	
Return Period (yea		100	
FEH Rainfall Vers	sion	2013	
Site Locat	ion GB 452975 1963	83 SU 52975 96383	
Data 1	Гуре	Point	
Summer Sto		Yes	
Winter Sto		Yes	
Cv (Summ Cv (Wint		0.750 0.840	
CV (Wint Shortest Storm (mi	,	0.840	
Longest Storm (mi		10080	
Climate Chang		+40	
<u>T</u>	ime Area Diagram	<u>n</u>	
Т	otal Area (ha) 4.61	0	
Time (mins) Area	Time (mins) Area	Time (mins) Area	
From: To: (ha)	From: To: (ha)	From: To: (ha)	
0 4 1.537	4 8 1.537	8 12 1.537	
	982-2020 Innovy:	70	

RPS Group Plc		Page 4
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 04/11/2024 08:44	Designed by JESSICA.GRADY	Drainage
File Worst Case Infiltration	Checked by	Diamage
Innovyze	Source Control 2020.1	

Model Details

Storage is Online Cover Level (m) 64.260

Infiltration Basin Structure

Invert Level (m) 62.760 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03132 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.03132

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 2666.6 1.500 3553.9